利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Promoted sludge anaerobic digestion by the hydrolase produced from food waste fermentation with Aspergillus oryzae
  • 作者:汪刚慧 ; 刘宏波 ; 郑志永 ; 唐晓博 ; 钱明达 ; 刘和
  • 英文作者:WANG Ganghui;LIU Hongbo;ZHENG Zhiyong;TANG Xiaobo;QIAN Mingda;LIU He;School of Environmental and Civil Engineering, Jiangnan University;Jiangsu Key Laboratory of Anaerobic Biotechnology;Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment;Wuxi Hi-Tech Water Services Limited;
  • 关键词:剩余污泥 ; 厌氧消化 ; 餐厨垃圾 ; 米曲霉 ; 水解酶
  • 英文关键词:excess sludge;;anaerobic digestion;;food waste;;Aspergillus oryzae;;hydrolase
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:江南大学环境与土木工程学院;江苏省厌氧生物技术重点实验室;江苏省水处理技术与材料协同创新中心;无锡市高新水务有限公司;
  • 出版日期:2019-03-19 09:27
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金资助项目(51678280);; 国家水体污染控制与治理科技重大专项(2015ZX07306001-05)
  • 语种:中文;
  • 页:HJJZ201905021
  • 页数:11
  • CN:05
  • ISSN:11-5591/X
  • 分类号:173-183
摘要
将米曲霉接种到餐厨垃圾中生产水解酶,并利用此生物酶强化污泥厌氧消化。对比分析了富含水解酶的餐厨垃圾(实验组)、中温灭活富含水解酶的餐厨垃圾(对照组A)和未发酵餐厨垃圾(对照组B)分别与剩余污泥厌氧共消化情况;考察了实验组对污泥厌氧体系的促进效果;并运用3种模型对反应体系中底物的产甲烷潜力进行了拟合。结果显示,实验组甲烷含量最高可达71.51%;挥发性固体单位累计甲烷产量为(308.46±19.47) mL·g~(-1),相比对照组A和对照组B显著提高(P<0.05),分别是对照组A和对照组B的1.56倍和1.31倍。修正的Gompertz模型优于一级动力学模型和Cone模型,能够很好地预测厌氧消化体系的最大甲烷产量,更适宜于拟合富酶餐厨与剩余污泥厌氧共消化体系。
        Aspergillus oryzaewas inoculated into food waste for hydrolase production and this biological enzyme was then used to strengthen sludge anaerobic digestion. The comparison of sludge anaerobic co-digestions was performed among three different types of additives: food waste with hydrolase(experimental group), food waste with medium inactivated hydrolase(control group A) and raw food waste(control group B). The promotion efficiency of experimental group for sludge anaerobic digestion was evaluated. Three models were used to fit the methanogenic potential of the substrate in above reaction system. Results indicated that the highest methane content of experimental group was 71.51%. Its cumulative methane yield per unit of volatile solid was(308.46±19.47) mL·g~(-1), which presented better performance than other two control groups of A and B(P<0.05), and were1.56 times and 1.31 times of control group A and control group B, respectively. Comparing with the first-order kinetic model and Cone model, the modified Gompertz model was superior to predict the maximum methane production of the anaerobic digestion system, and more suitable for fitting the anaerobic co-digestion system including food waste enriched with enzyme and excess sludge.
引文
[1]姜俊杰,梁美生,李伟,等.脉冲电场在污泥处理中的应用[J].环境工程学报, 2016, 10(1):405-409.
    [2]刘充.预处理调解对剩余污泥发酵液微生物电解产氢影响研究[D].哈尔滨:哈尔滨工业大学, 2016.
    [3] YIN Y, LIU Y J, MENG S J, et al. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion[J]. Applied Energy, 2016, 179:1131-1137.
    [4] LIU H B, XIAO H, YIN B, et al. Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge[J]. Chemical Engineering Journal, 2016, 284:194-201.
    [5] HANDA C L, SANCHES D L F, GETON G M F, et al. Parameters of the fermentation of soybean flour by monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity[J]. Food Chemistry, 2019, 271:274-283.
    [6]陈园,张增强,沈志红,等.羊肚菌固体发酵转化厨余垃圾制取饲料的研究[J].农业环境科学学报, 2011, 30(4):761-767.
    [7]赵晨.多种水果废弃物厌氧消化产甲烷能力的研究[D].北京:北京化工大学, 2017.
    [8]冯晶,赵立欣,姚宗路,等.稻壳鸭粪混合物料厌氧消化产沼气模型研究[J].环境科学与技术, 2016, 39(s2):238-242.
    [9] HOH C Y, CORD-RUWISCH R. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant[J]. Biotechnology&Bioengineering, 2015, 51(5):597-604.
    [10] NEMESTóTHY N, BAKONYI P, RóZSENBERSZKI T, et al. Assessment via the modified gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production[J]. International Journal of Hydrogen Energy, 2018,43(41):18918-18924.
    [11] LI J H, ZHANG M, YE Z Y, et al. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge[J]. Journal of Environmental Sciences, 2018, 76(2):267-277.
    [12]国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [13] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1):265-275.
    [14] ZHANG B, HE P J, LU F, et al. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes[J].Water Research, 2007, 41(19):4468-4478.
    [15]周莉,李佩璇,赵钰灵,等.响应面法优化南极磷虾粗脂肪索氏提取工艺[J].食品科学, 2017, 38(24):165-170.
    [16] AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38(2):255-266.
    [17] ZHOU Y L, XU Z Y, ZHAO M X, et al. Construction and evaluation of efficient solid-state anaerobic digestion system via vinegar residue[J]. International Biodeterioration&Biodegradation, 2018, 133:142-150.
    [18]苑宏英,李琦,杨玉萍,等. pH对蛋白类餐厨垃圾发酵产酸的影响[J].环境工程学报, 2018, 12(10):2929-2934.
    [19]杨梦,郑志永,余雷,等.卧式厌氧消化反应器处理高含固污泥的特性研究[J].环境污染与防治, 2018, 40(11):1224-1228.
    [20] YIN B, LIU H B, WANG Y Y, et al. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge:Protease catalysis of refractory protein[J]. Bioresource Technology, 2016, 203:124-131.
    [21]祖叶品,刘宏波,符波,等.蛋白酶和EDTA-2Na协同作用对剩余污泥水解的影响[J].环境工程学报,2013,7(8):3158-3164.
    [22] SVENSSON K, KJ?RLAUG O, HIGGINS M J, et al. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste:Effect on methane yields, dewaterability and solids reduction[J]. Water Research, 2018, 132:158-166.
    [23] POGORELKO G, LIONETTI V, FURSOVA O, et al. Arabidopsis and brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens[J]. Plant Physiology, 2013, 162(1):9-23.
    [24] MA Y Q, GU J, YU L. Evaluation of anaerobic digestion of food waste and waste activated sludge:Soluble COD versus its chemical composition[J]. Science of the Total Environment, 2018, 643:21-27.
    [25] YU S Y, ZHANG G M, LI J Z, et al. Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge[J]. Bioresource Technology, 2013, 146:758-761.
    [26] DU H X, LI F S. Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge[J]. Chemosphere, 2016, 168:1022-1031.
    [27] LAY J J, LI Y Y, NOIKE T, et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Water Science and Technology, 1997, 36(6/7):493-500.
    [28] KAYHANIAN M. Ammonia inhibition in high-solids biogasification:An overview and practical solutions[J]. Environmental Technology, 1999, 20(4):355-365.
    [29]罗琨,杨麒,李小明,等.外加酶强化剩余污泥水解的研究[J].环境科学, 2010, 31(3):763-767.
    [30]李建昌,何娟,袁亚阁,等.垃圾厌氧消化中淀粉酶活与产气量关系的研究[J].环境科学与技术, 2013, 36(S1):22-25.
    [31] YANG H, HOU G Y, ZHANG L, et al. Exploring the effect of bisphenol S on sludge hydrolysis and mechanism of the interaction between bisphenol S and alpha-amylase through spectrophotometric methods[J]. Journal of Photochemistry and Photobiology B:Biology, 2017, 167:128-135.
    [32] LUO K, YANG Q, LI X M, et al. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced byα-amylase[J]. Biochemical Engineering Journal, 2012, 62(1):17-21.
    [33] UGWUANYI J O, HARVEY L M, MCNEIL B. Development of thermophilic populations, amylase and cellulase enzyme activities during thermophilic aerobic digestion of model agricultural waste slurry[J]. Process Biochemistry, 2004, 39(11):1661-1669.
    [34]方慧莹,王端立,陈皓,等.纳米零价铁对厌氧消化影响的反应动力学模型[J].化工学报, 2017, 68(5):2042-2048.
    [35] EL-MASHAD H M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae[J]. Bioresource Technology, 2013, 132(3):305-312.
    [36] GUNASEELAN V N. Biochemical methane potential of fruits and vegetable solid waste feedstocks[J]. Biomass&Bioenergy,2004, 26(4):389-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700