摩擦副界面微造型序列对气体密封性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of friction pair interface micro-texture sequence on gas sealing performance
  • 作者:陈传刚 ; 丁雪兴 ; 陆俊杰 ; 张伟政 ; 陈金林
  • 英文作者:CHEN Chuangang;DING Xuexing;LU Junjie;ZHANG Weizheng;CHEN Jinlin;College of Petrochemical Engineering, Lanzhou University of Technology;Ningbo Institute of Technology, Zhejiang University;
  • 关键词:润滑性能 ; 磨损 ; 数值模拟 ; 微造型 ; 气体密封 ; 结构参数
  • 英文关键词:lubrication performance;;attrition;;numerical simulation;;micro-texture;;gas seal;;structural parameters
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:兰州理工大学石油化工学院;浙江大学宁波理工学院;
  • 出版日期:2018-12-20 15:18
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51565029,51165020)
  • 语种:中文;
  • 页:HGSZ201903025
  • 页数:11
  • CN:03
  • ISSN:11-1946/TQ
  • 分类号:236-246
摘要
摩擦副表-界面的微型结构具有减少摩损、提高润滑性能等作用。在动、静环摩擦端面开设微槽与微孔的复合微造型跨尺度润滑气膜计算域模型,利用独有block映射技术的ICEM软件进行结构化网格划分,并对流场进行数值模拟。以密封的工况条件为出发点,结合微造型结构尺寸,从气膜开启力、泄漏量、润滑气膜摩擦系数及壁面剪切力四个方面展开讨论,结果表明:在介质压力和转速相同时,微孔的覆盖比对气体密封性能影响较大,增幅为5%~8%,并且当覆盖比为50%时气体密封的性能可达到最佳。之后以此为基准改变该模型微孔的密度、深度、直径,通过研究四种参数的变化规律发现微孔的密度和直径对密封性能提升较大,增幅为7%~8%,并且微孔密度为12.5%,深度为10μm,直径为400μm时气体密封性能可达到最佳水平。
        The microstructures between the relatively sliding friction pair surface-interface can reduce attrition and improve lubricity. Computational domain model of cross scale lubrication film with micro-holes and micro-grooves on static and move rings were established. The lubrication film structured grids were meshed by the software ICEM with unique lock mapping technology. Then the Fluent was used for numerical simulation. Taking the working conditions of the seal as the starting point, combined with the size of the micro-modeling structure, the paper discusses the four factors: the film opening force, the leakage amount, the friction coefficient of the lubricating film and the wall shearing force. The results showed that under the same medium pressure and rotational speed, the coverage ratio of micro-holes have a greater impact on the performance of gas sealing, and the increase is 5% to 8%, the gas sealing performance can achieve the best level when the coverage ratio of micro-holes is 50%. After that, the density, depth and diameter of the friction pair interface of the model were changed according to this criterion. It was found that the density and diameter of the micro-hole could significantly improve the sealing performance by 7% to 8%. And the gas seal performance can reach the best level when the micro-hole density is 12.5%, the depth is 10 μm and the diameter is 400 μm.
引文
[1]丁雪兴,张海舟,苏虹,等.螺旋槽干气密封气膜刚度测试与稳定性分析[J].振动与冲击,2013,32(12):163-168.Ding X X,Zhang H Z,Su H,et al.Calculation and testing of micro-scale gas film stiffness in the spiral groove gas seal[J].Journal of Vibration Measurement&Diagnosis,2013,32(12):163-168.
    [2]Jiang J B,Peng X D,Li J Y,et al.Leakage and stiffness characteristics of bionic cluster spiral groove dry gas seal[J].Chinese Journal of Mechanical Engineering,2018,31(1):21-31.
    [3]Yu S S.Analysis of pump dry gas sealing technology and its application[J].Chemical Engineering Design Communications,2017,43(5):82-84.
    [4]Huang W F,Gao Z,Fan W J,et al.An acoustic emission study on the starting and stopping processes of a dry gas seal for pumps[J].Tribology Letters,2013,49(2):379-384.
    [5]Chen Y,Peng X D,Jiang J B,et al.Experimental and theoretical studies of the dynamic behavior of a spiral-groove dry gas seal at high-speeds[J].Tribology International,2018,125:17-26.
    [6]Arghir M,Nguyen M H,Tonon D,et al.Analytic modeling of floating ring annular seals[J].Journal of Engineering for Gas Turbines&Power,2011,134(5):577-586.
    [7]Balakh L Y,Nikiforov A N.The reduction of the vibration level in high-speed rotor systems by means of floating seal rings[J].Journal of Machinery Manufacture&Reliability,2013,42(4):276-280.
    [8]Yurko V,Martsynkovskyy V.Influence of changing the end floating seal dynamic characteristics on the centrifugal compressor vibration state[J].Applied Mechanics&Materials,2013,630(1):356-364.
    [9]邵天敏,耿哲.图形化固体薄膜技术及其摩擦学性能的研究进展[J].中国表面工程,2015,28(2):1-26.Shao T M,Geng Z.Research progress in patterned thin solid film techniques and their tribological performance[J].China Surface Engineering,2015,28(2):1-26.
    [10]Gabriel R P.Fundamentals of spiral groove noncontacting face seals[J].Lubrication Engineering,1994,50:215-224.
    [11]Miller B A,Woodruff G W.Numerical formulation for the dynamic analysis of spiral-grooved gas face seals[J].Journal of Tribology,2001,123(2):395-403.
    [12]Ruan B.A semi-analytical solution to the dynamic tracking of non-contacting gas face seals[J].Journal of Tribology,2002,124(1):196-202.
    [13]Balakh L Y,Nikiforov A N.The reduction of the vibration level in high-speed rotor systems by means of floating seal rings[J].Journal of Machinery Manufacture&Reliability,2013,42(4):276-280.
    [14]彭旭东,江锦波,白少先,等.干式气体密封端面型槽仿生设计的相关性[J].机械工程学报,2014,50(3):151-157.Peng X D,Jiang J B,Bai S X,et al.Correlational research of bionics design of dry gas face seal groove[J].Journal of Mechanical Engineering,2014,50(3):151-157.
    [15]Chen Y,Jiang J B,Peng X D.Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal[J].Chinese Journal of Mechanical Engineering,2016,29(6):1-8.
    [16]Holmberg K,Matthews A.Coatings Tribology[M].2nd ed.Amsterdam:Elsevier,2009.
    [17]万轶,熊党生.激光表面织构化改善摩擦学性能的研究进展[J].摩擦学学报,2006,26(6):603-607.Wan Y,Xiong D S.Study of laser surface texturing for improving tribological properties[J].Tribology,2006,26(6):603-607.
    [18]王素华,吴新跃.基于摩擦学的表面织构技术应用研究进展[J].工具技术,2011,45(12):7-11.Wang S H,Wu X Y.Research on applications of surface texturing based on tribology[J].Tool Engineering,2011,45(12):7-11.
    [19]Podchernyaeva I A,Yurechko D V,Panashenko V M.Some trends in the development of wear-resistant functional coatings[J].Powder Metallurgy&Metal Ceramics,2013,52(3/4):176-188.
    [20]Cai M R,Guo R S,Zhou F,et al.Lubricating a bright future:lubrication contribution to energy saving and low carbon emission[J].Science China Technological Sciences,2013,56(12):2888-2913.
    [21]Hamilton D B,Walowit J A,Allen C M.A theory of lubrication by micro-irregularities[J].Journal of Basic Engineering,1966,88(1):177-185.
    [22]Rohde.A mixed friction model for dynamically loaded contacts with application to piston ring lubrication[C]//Surface Roughness Effects in Hydrodynamic and Mixed Lubrication,Chicago,1980:19-50.
    [23]Varenberg M,Halperin G,Etsion I.Different aspects of the role of wear debris in fretting wear[J].Wear,2002,252(11):902-910.
    [24]黎红,黄楠.生物摩擦学及表面工程的研究现状和进展[J].中国表面工程,2000,13(1):6-10.Li H,Huang N.Current situation and development of biotribology and surface engineering research[J].China Surface Engineering,2000,13(1):6-10.
    [25]于海武,王晓雷,孙造,等.圆柱形微凹坑表面织构对流体动压润滑性能的影响[J].南京航空航天大学学报,2010,42(2):209-213.Yu H W,Wang X L,Sun Z,et al.Theoretical analysis on hydrodynamic lubrication of cylinder micro-dimple surface texture[J].Journal of Nanjing University of Aeronautics&Astronautics,2010,42(2):209-213.
    [26]程香平,康林萍,张友亮,等.润滑条件下菱形孔织构端面摩擦学特性研究[J].摩擦学学报,2015,35(6):658-664.Cheng X P,Kang L P,Zhang Y L,et al.Tribological characteristics of end faces with diamond macro-pores textured under lubrication[J].Tribology,2015,35(6):658-664.
    [27]Wang X Y,Shi L,Dai Q,et al.Multi-objective optimization on dimple shapes for gas face seals[J].Tribology International,2018,123:216-223.
    [28]王纯,刘艳梅,周涛,等.基于ICEM CFD对汽轮机末级三维叶片流场网格划分方法的优化[J].汽轮机技术,2012,54(5):324-326.Wang C,Liu Y M,Zhou T,et al.Optimization of mesh generation of steam turbine last stage 3D blade field based on ICEM CFD[J].Turbine Technology,2012,54(5):324-326.
    [29]李存标,吴介之.壁流动中的转捩[J].力学进展,2009,39(4):480-507.Li C B,Wu J Z.The transition in wall flow[J].Advances in Mechanics,2009,39(4):480-507.
    [30]吴介之.运动物体与涡量场相互作用的不可压理论--涡量场在物面的产生及其耗散[J].空气动力学学报,1986,(2):44-52.Wu J Z.Incompressible theory of interaction between moving bodies and vorticity field:force on moving bodies by vorticity field[J].Acta Aerodynamica Sinica,1986,(2):44-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700