纳米尖晶石铁氧体电化学性能影响因素的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Factors Affecting the Electrochemical Properties of Nano-ferrites
  • 作者:张丽娜 ; 李光磊 ; 罗铭宇 ; 段红珍
  • 英文作者:ZHANG Li-na;LI Guang-lei;LUO Ming-yu;DUAN Hong-zhen;School of Science, North University of China;
  • 关键词:铁氧体 ; 电化学 ; 电解质 ; 影响因素 ; 纳米材料
  • 英文关键词:ferrite;;electrochemistry;;electrolytes;;factors affecting;;nanomaterials
  • 中文刊名:HNHG
  • 英文刊名:Fine Chemical Intermediates
  • 机构:中北大学理学院;
  • 出版日期:2019-02-28
  • 出版单位:精细化工中间体
  • 年:2019
  • 期:v.49;No.238
  • 基金:山西省留学基金项目(2014-重点6);; 国家自然基金资助项目(51272239)
  • 语种:中文;
  • 页:HNHG201901003
  • 页数:5
  • CN:01
  • ISSN:43-1354/TQ
  • 分类号:12-16
摘要
纳米铁氧体因其成本低,环保友好,资源丰富而被广泛研究。然而,纳米铁氧体在制备中团聚现象严重使其有效表面积降低,导致比电容量下降,影响其推广和使用。综述了纳米尖晶石型铁氧体电化学性能的影响因素并提出了改善其性能的方法,讨论了材料结构和形貌、原子掺杂、复合、电解质及其浓度对其电化学性能的影响,并展望了未来的发展方向。
        Nanoferrites have been widely received significant attention owing to their low cost, low environmental impact, and high theoretical capacity. However, the agglomeration of nanoferrites in the preparation processhas seriously reduced its effective surface area, which leads to the decrease of specific capacitance, and affects its popularization and application. In this paper, the influencing factors of the electrochemical properties of nano-spinel ferrites are reviewed and methods for improving their performance are proposed, which are based on the following aspects: material structure and morphology, atomic doping,compounding,electrolytes and their concentrations. Its future development is prospected.
引文
[1]朱脉勇,陈齐,童文杰,等.四氧化三铁纳米材料的制备与应用[J].化学进展, 2017, 29(11):1 366-1 394.
    [2] Bhujun B, Tan M T, Shanmugam A S. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications[J]. Results in Physics, 2017, 7:345-353.
    [3]段红珍,程霞,罗铭宇,等.纳米CuFe2O4-rGO复合材料的制备及电化学性能[J].无机化学学报, 2017, 33(12):2 208-2 214.
    [4] Tahir A A, Burch H A, Wijayantha K G U, et al. A new route to control texture of materials:Nanostructured ZnFe2O4photoelectrodes[J]. International Journal of Hydrogen Energy,2013, 38(11):4 315-4 323.
    [5] Lingamdinne L P, Choi Y L, Kim I S, et al. Preparation and characterization of porousreduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides[J]. Journal of Hazardous Materials, 2016, 326:145.
    [6] Salunkhe A B, Khot V M, Ruso J M, et al. Water dispersible superparamagnetic Cobalt ironoxide nanoparticles for magnetic fluid hyperthermia[J]. Journal of Magnetism&Magnetic Materials,2016, 419:533-542.
    [7] DattG, Kotabage C, Abhyankar A C. Ferromagnetic resonance of NiCoFe2O4nanoparticles and microwave absorption properties of flexible NiCoFe2O4-carbon black/poly(vinyl alcohol)composites[J].Physical Chemistry Chemical Physics, 2017, 19(31):20 699-20 712.
    [8]高明星,景红霞,王星梅,等.纳米钴铁氧体吸波材料的研究进展[J].现代化工, 2016, 36(7):25-28.
    [9] Chaopeng F, Amoghavarsha M, Patrick S G. Fe3O4/Carbon nanofibres with necklacearchitecture for enhanced electrochemical energystorage[J]. Journal of Materials Chemistry A, 2015, 3(27):14 245-14 253.
    [10]王晶晶.高比表面积CoFe2O4粉体及复合材料的制备与性能研究[D].陕西:陕西科技大学, 2018.
    [11] Zhao X, Johnston C, Crossley A, et al. Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors[J].Journal of Materials Chemistry, 2010, 20(36):7 637-7 644.
    [12] Aparna M L, Grace A N, Sathyanarayanan P, et al. A comparative study on the supercapacitivebehaviour of solvothermally prepared metal ferrite(MFe2O4, M=Fe, Co, Ni, Mn, Cu, Zn)nanoassemblies[J]. Journal of Alloys&Compounds, 2018:745.
    [13] Deng D H, Pang H, Du J M, et al. Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties[J]. Crystal Research&Technology, 2012, 47(10):1 032-1 038.
    [14] Lin Y, Zhang J, Li M, et al. An excellent strategy for synthesis of coral-like ZnFe2O4, particles for capacitive pseudocapacitors[J].Journal of Alloys&Compounds, 2017:726.
    [15]于敏娜,魏长平,刘颖. ZnFe2O4、 MnFe2O4铁氧体纳米粒子的制备、表征及磁性能[J].化工进展, 2010, 29(S2):278-281.
    [16] Gawande M B, Branco P S, Varma R S. Nano-magnetite(Fe3O4)as a support for recyclable catalysts in the development of sustainable methodologies[J]. Chemical Society Reviews, 2013, 42(8):3 371.
    [17] Yang X, Kan J, Zhang F, et al. Facile fabrication of Mn2+, doped magnetite microspheres as efficient electrode material for supercapacitors[J]. Journal of Inorganic&Organometallic Polymers&Materials, 2017, 27(2):1-10.
    [18] Alshehri S M, Ahmed J, Alhabarah A N, et al. Nitrogen-doped cobalt ferrite/carbon nanocomposites for supercapacitor applications[J]. Chemelectrochem, 2017, 4(11):2 952-2 958.
    [19] Rai A, Sharma A L, Thakur A K. Evaluation of aluminium doped lanthanum ferrite based electrodes for supercapacitor design[J].Solid State Ionics, 2014, 262(9):230-233.
    [20] Fan H, Niu R, Duan J, et al. Fe3O4@Carbon Nanosheets for AllSolid-State Supercapacitor Electrodes[J]. Acs Appl Mater Interfaces, 2016, 8(30):19 475-19 483.
    [21] Suresh S, Prakash A, Bahadur D. The role of reduced graphene oxide on the electrochemical activity of MFe2O4,(M=Fe, Co, Ni and Zn)nanohybrids[J]. Journal of Magnetism&Magnetic Materials,2017:448.
    [22] Jin R, Wang Q, Cui Y, et al. MFe2O4(M=Ni, Co)nanoparticles anchored on amorphous carbon coated multiwalled carbon nanotubes as anode materials for lithium-ion batteries[J]. Carbon,2017:123.
    [23] Kumar M P, LathikaL M, Mohanachandran A P, et al. A highperformance flexible supercapacitor anodeBased on polyaniline/Fe3O4composite@c Carbon cloth[J]. Chemistry Select, 2018, 3(11):3 234-3 240.
    [24]程霞. RxMn(1-x)Fe2O4/石墨烯复合材料的制备及电化学性能研究[D].山西:中北大学, 2018.
    [25] Malaie K, Ganjali M R, Alizadeh T, et al. Facile polyol synthesis of CoFe2O4, nanosphere clusters and investigation of their electrochemical behavior in different aqueous electrolytes[J].Applied Physics A, 2018, 124(4):295.
    [26] Vignesh V, Subramani K, Sathish M, et al. Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications[J]. Colloids&Surfaces A Physicochemical&Engineering Aspects, 2018.
    [27] Wang R, Li Q, Cheng L, et al. Electrochemical properties of manganese ferrite-basedsupercapacitors in aqueous electrolyte:The effect of ionic radius[J]. Colloids&Surfaces A Physicochemical&Engineering Aspects, 2014, 457(1):94-99.
    [28] Wang Y, Pan D, Zhang M, et al. Construction of three-dimensional nitrogen-doped graphene coated with uniform nickel oxide/nickel ferrite nanoparticles with enhanced electrochemical properties for supercapacitors[J]. Journal of Alloys&Compounds, 2018.
    [29] Yu Z Y, Chen L F, Yu S H. Growth of NiFe2O4nanoparticles on carbon cloth for high performance flexible supercapacitors[J].Journal of Materials Chemistry A, 2014, 2(28):10 889.
    [30] Javed M S, Zhang C, Chen L, et al. Hierarchical mesoporous NiFe2O4nanocone forest directly growing on carbon textile for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(22):125-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700