白垩纪海水Ca异常与溢晶石形成的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between Cretaceous seawater Ca anomaly and Tachyhydrite formation
  • 作者:程怀德 ; 李俊 ; 海擎宇
  • 英文作者:Cheng Huaide;Li Jun;Hai Qingyu;Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Key Laboratory of Comprehensive and efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences;Qinghai key Laboratory of Salt Lake Geology and Environment;University of Chinese Academy of Sciences;
  • 关键词:蒸发盐 ; Ca异常 ; 溢晶石 ; 相化学 ; 白垩纪海水
  • 英文关键词:evaporite;;Ca anomaly;;Tachyhydrite;;Phase chemistry;;Cretaceous seawater
  • 中文刊名:HGKC
  • 英文刊名:Geology of Chemical Minerals
  • 机构:中国科学院青海盐湖研究所中国科学院盐湖资源综合高效利用重点实验室;青海省盐湖地质与环境重点实验室;中国科学院大学;
  • 出版日期:2018-09-15
  • 出版单位:化工矿产地质
  • 年:2018
  • 期:v.40
  • 基金:青海省应用基础研究计划项目(2016-ZJ-781)
  • 语种:中文;
  • 页:HGKC201803001
  • 页数:12
  • CN:03
  • ISSN:13-1190/P
  • 分类号:3-14
摘要
在白垩纪出现了3个典型的缺硫酸盐型"异常"蒸发盐,巴西塞尔希培盆地、西非刚果盆地、泰国和老挝呵叻盆地,3个蒸发盐盆地中均出现了含钙的溢晶石矿物。尽管对这些盆地蒸发盐的成因存在争议,但目前认为形成溢晶石Ca的来源主要为非海相CaCl_2热液流体。利用前人初始沉积石盐包裹体卤水组分分析结果的相化学分析,在25℃NaCl-KCl-MgCl_2-CaCl_2-H_2O五元体系相图中讨论溢晶石形成的物理化学条件,认为白垩纪古海水Ca异常是溢晶石形成的物质条件,干燥、高温是溢晶石形成的外界因素。
        During the Cretaceous period, there were three typical sulphate deficient "abnormal" evaporative salt,Brazil Sergipe Basin, West Africa Congo Basin, Thailand and Laos Khorat Basin, Tachyhydrite minerals were found in the threeevaporative salt basins. Although the origin of evaporation salts in these basins is controversial, it is presently believed that the source of Tachyhydrite Ca is mainly non-marine CaCl_2 hydrothermal fluid.Based on the analysis results of brine components of the original sedimentary salt inclusions,The physical and chemical conditions of Tachyhydrite formation are discussed in the phase diagram of 25 ℃ NaCl-KCl-MgCl_2-CaCl_2-H_2 O Five-element system. It is considered that the Cretaceous paleo-seawater Ca anomaly is the material condition of Tachyhydrite formation, and drying and high temperature are the external factors for the formation of Tachyhydrit.
引文
1李善平,马海州,陈有顺,等.老挝万象盆地钾盐矿床微量元素地球化学特征及矿床的成因[J].地质通报,2010,29(5):760~770
    2曲懿华.泰国呵叻高原钾盐矿床沉积特征及成因探讨[J].化工矿产地质,1980,2(1):13~22
    3曲懿华.兰坪-思茅盆地与泰国呵叻盆地含钾卤水同源性研究-兼论该区找钾有利层位和地区[J].化工矿产地质,1997,19(2):81~84,98
    4程怀德,马海州,山发寿,等.基于相化学研究老挝万象钾镁盐矿床形成的机制[J].地球学报,2010,31(2):194~202
    5张西营,马海州,谭红兵,等.老挝东泰钾盐矿床地球化学及其沉积后变化初步研究[J].矿床地质,2010,29(4):713~721
    6钟维敷,李志伟,单卫国.呵叻盆地钾镁盐矿沉积特征及成因探讨[J].云南地质,2003,22(2):142~150
    7 Rammelsberg C.über den Tachhydrit,ein neues mineral aus dem Steinsalzlager von Sta?furt[J].Pogg.Anm.d.Physik,1856,97/98 S:261~263,267
    8 Lowenstein T K,Spencer R J.Syndepositional origin of potash evaporites:petrographic and fluid inclusion evidence[J].American Journal of Science,1990,290:1~42
    9 Hardie L A.The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites:an hypothesis[J].American Journal of Science,1990,290:43~106
    10 El Tabakh M,Utha-Aroon C,Schreiber B C.Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand[J].Sedimentary Geology,1999,123:31~62
    11 Garrett D E.Potash:Deposits,processing,properties and uses[M].London:Chapman&Hall,1996:1~80
    12 Warren J K.Evaporites:Their evolution and economics[M].Oxford:Blackwell Science,1999,235~239
    13 Wardlaw N C.Unusual marine evaporites with salts of calcium and magnesium chloride in Cretaceous basins of Sergipe,Brazil[J].Economic Geology,1972,67:156~168
    14 Clark J R,Evans H T,Erd R C.Tachyhydrite,dimagnesium calcium chloride 12-hydrate[J].Acta Crystallographica,1980,B36:2736~2739
    15 Braitsch O.Salt deposits-their origin and composition[M].New York:Springer-Verlag,1971,297
    16 Mineralogy Database.[2012-02-01].http://webmineral.com.
    17 D’Ans J.über die bildungsm?glichkeiten des tachhydrits in kalisalzlagerst?tten[J].Kali und Steinsalz,1961,3:105~136
    18 Assarsson G O.Equilibria in aqueous systems containing K+,Na+,Ca2+,Mg2+and Cl-.III.The ternary system CaCl2-Mg Cl2-H2O[J].Journal of the American Chemical Society,1950,72:1442~1444
    19 Hite R J,Japakasetr T.Potash deposits of the Khorat Plateau,Thailand and Laos[J].Economic Geology,1979,74:448~458
    20 Sattayarak N,Polachan S,Charusirisawad R.1991.Cretaceous rock salt in the northeastern part of Thailand.(abstract)[C].In:Proceedings of the 7th Regional Conference Geology and Mineral Resources Southeast Asia(GEOSEA VII).Bangkok,1991:36
    21 Smith P F L,Stokes R B,Bristow C,et al.Mid-Cretaceous inversion in the northern Khorat Plateau of Lao PDR and Thailand[M]//Hall R,Blundell D J.(Eds.).Tectonic Evolution of Southeast Asia,106.Geological Society of London Special Publication,1996:233~246
    22 Utha-Aroon C.Continental origin of the Maha Sarakham evaporates,northeastern Thailand[J].Journal of Southeast Asian Earth Science,1993,8:193~203
    23 Hite R J.Evaporite deposits of the Khorat Plateau,northeastern Thailand[C].In:Coogan,A H.(Ed.),Fourth International Symposium on Salt.Geological Society Northern Texas,1974,135~146
    24 Timofeeff M N,Lowenstein T K,da Silva M A M,et al.Secular variation in the major-ion chemistry of seawater:evidence from fluid inclusions in Cretaceous halites[J].Geochimica et Cosmochimica Acta,2006,70(8):1977~1994
    25本山正夫,門田稔,岡俊平.25℃にぉけゐNaCl-KCl-MgCl2-CaCl2-H2O系の相平衡[J].日本海水会誌,1972,26(4):173~180
    26 Evans R.Origin and significance of evaporites in basins around Atlantic margin[J].Am.Assoc.Petrol.Geol.Bull.,1978,62(2):223~234
    27 Burke K,Seng?r A M.Ten metre global sea-level change associated with South Atlantic Aptian salt deposition[J].Marine Geology,1988,83:309~312
    28 Coward M P,Purdy E G,Ries A C,et al.The distribution of petroleum reserves in basins of the South Atlantic margins[M]//Cameron N R,Bate RH,Clure V S(Eds.),The Oil and Gas Habitats of the South Atlantic,153.Geological Society Special Publication,1999:283~292
    29 Wardlaw N C,Nicholls G D.Cretaceous evaporites of Brazil and west Africa and their bearing on the theory of continent separation[C].In:24th International Geological Congress,1972,sec.6:43-55
    30 de Ruiter P A C.The Gabon and Congo basins salt deposits[J].Economic Geology,1979,74(2):419~431.
    31 Nürnberg D,Müller R D.The tectonic evolution of the South Atlantic from Late Jurassic to present[J].Tectonophysics,1991,191:27~53
    32 Maurin J C,Guiraud R.Basement control in the development of the Early Cretaceous West and Central African rift system[J].Tectonophysics,1993,228:81~95
    33 Oliver F Z.Sequência evaporitica Ibura da Bacia de Sergipe:Revisao de facies sedimentares,paleoambientes deposicionais epotencialidades na geracao de petroleo[D].Dissertacao de mestrado,Universidade Federal Fluminense,1997:145
    34 Silva M A M..The Araripe Basin,northeastern Brazil:regional geology and facies analysis of a Lower Cretaceous evaporitic depositional complex[D].Ph.D.dissertation,Columbia University,1983:277
    35 Szatmari P,Carvalho R S,Simoes I A.A comparison of evaporite facies in the Late Paleozoic Amazon and the Middle Cretaceous south Atlantic salt basins[J].Economic Geology,1979,74:432~447
    36 Holser W T.Chemistry of brine inclusions in Permian salt from Hutchinson,Kansas[C].In Symposium on Salt(Bersticker AC,ed.),Northern Ohio Geological Society,1963(1):86~95
    37 Lazar B,Holland H D.The analysis of fluid inclusions in halite[J].Geochimica et Cosmochimica Acta,1988,52:485~490
    38 Kramer J R.History of seawater.Constant temperature-pressure equilibrium models compared to fluid inclusion analyses[J].Geochimica et Cosmochimica Acta,1965,29:921~945
    39 Petrichenko O I.Methods of study of inclusions in minerals in saline deposits[J].Fluid Inclusion Research,1979,12:114~274
    40 Stein C L,Krumhansl J L.A model for the evolution of brines in salt from the lower Salado Formation,southeastern New Mexico[J].Geochimica et Cosmochimica Acta,1988,52:1037~1046
    41 Das N,Horita J,Holland H D.Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin:Implications for Late Silurian seawater and the origin of sedimentary brines[J].Geochimica et Cosmochimica Acta,1990,54:319~327
    42 Horita J,Friedman T J,Lazar B,et al.The composition of Permian seawater[J].Geochimica et Cosmochimica Acta,1991,55:417~432
    43 Ayora C,Garcia-Veigas J,Pueyo J J.X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins[J].Geochimica et Cosmochimica Acta,1994,58:43~55
    44 Ayora C,Garcia-Veigas J,Pueyo J J.The chemical and hydrological evolution of an ancient potash-forming evaporite basin in Spain as constrained by mineral sequence,fluid inclusion composition,and numerical simulation[J].Geochimica et Cosmochimica Acta,1994,58:3379~3394
    45 Land L S,Eustice R A,Mack L E,et al.Reactivity of evaporites during burial:An example from the Jurassic of Alabama[J].Geochimica et Cosmochimica Acta,1995,59:3765~3778
    46 Holser W T.Trace elements and isotopes in evaporites[M]//Burns R G,ed.Marine Minerals.Reviews in Mineralogy.Mineralogical Society of America.1979,6:295~346
    47 Holser W T.Mineralogy of evaporites[M]//Burns R G,ed.Marine Minerals.Reviews in Mineralogy.Mineralogical Society of America.1979,6:211-294
    48 Hardie L A.Evaporites:marine or non-marine?[J].American Journal of Science,1984,284:193~240
    49 Hardie L A,Lowenstein T K,Spencer R J.The problem of distinguishing between primary and secondary features in evaporates[C].In Sixth International Symposium on Salt(eds.B.C.Schreiber and H.L.Harner),1985:11~38.Salt Institute
    50 Lowenstein T K,Spencer R J,Zhang P.Origin of ancient potash evaporates:Clues from the modern nonmarine Qaidam Basin of western China[J].Science,1989,245:1090~1092
    51 Smoot J P,Lowenstein T K.Depositional environments of non-marine evaporates[M]//Melvin J L,ed.Evaporites,Petroleum and Mineral Resources.Developments in Sedimentology.Elsevier.1991,50:189~347
    52 Attia O E,Lowenstein T K,Wali A M A.Middle Miocene gypsum,Gulf of Suez;Marine or nonmarine?[J].Journal Sedimentary Research,1995,A65:614~626
    53 Harvie C E,Weare J H.980.The prediction of mineral solubilities in natural waters:The Na-K-Mg-Ca-SO4-H2O system from zero to high concentration at 25℃[J].Geochimica et Cosmochimica Acta,1980,44:981~997
    54 Timofeeff M N,Lowenstein T K,Brennan S T,et al.Evaluating seawater chemistry from fluid inclusions in halite:Examples from modern marine and nonmarine environments[J].Geochimica et Cosmochimica Acta,2001,65:2293~2300
    55 Harvie C E,M?ller N,Weare J H.The prediction of mineral solubilities in natural waters:The Na-K-Mg-Ca-H-Cl-SO4-OH--HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C[J].Geochimica et Cosmochimica Acta,1984,48:723~751
    56 Horita J,Zimmermann H,Holland H D.The chemical evolution of seawater during the Phanerozoic:Implications from the record of marine evaporates[J].Geochimica et Cosmochimica Acta,2002,66:3733~3756
    57 Kovalevich V M,Peryt T M,Petrichenko O I.Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite[J].The Journal of Geology,1998,106:695~712
    58 Kovalevych V M,Peryt T M,Carmona V,et al.Evolution of Permian seawater:evidence from fluid inclusions in halite[J].Neues Jahrbuch für Mineralogie-Abhandlungen,2002,178:27~62
    59 Timofeeff M N,Lowenstein T K,Blackburn W H.ESEM-EDS:An improved technique for major element chemical analysis of fluid inclusions[J].Chemicl Geology,2000,164:171~182
    60 Zimmermann H.Tertiary seawater chemistry-implications from primary fluid inclusions in marine halite[J].American Journal of Science,2000,300:723~767
    61 Lowenstein T K,Timofeeff M N,Brennan S T,et al.Oscillations in Phanerozoic seawater chemistry:Evidence from fluid inclusions in salt deposits[J].Science,2001,294:1086~1088
    62 Lowenstein T K,Hardie L A,Timofeeff M N,et al.Secular variation in seawater chemistry and the origin of calcium chloride basinal brines[J].Geology,2003,31:857~860
    63 Lowenstein T K,Timofeeff M N,Kovalevych V M,et al.The major-ion composition of Permian seawater[J].Geochimica et Cosmochimica Acta,2005,69:1701~1719
    64 Brennan S T,Lowenstein T K.The major-ion composition of Silurian seawater[J].Geochimica et Cosmochimica Acta,2002,66:2683~2700
    65 Brennan S T,Lowenstein T K,Horita J.Seawater chemistry and the advent of biocalcification[J].Geology,2004,32:473~476
    66 Hardie L A.Secular variation in seawater chemistry:an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.[J].Geology,1996,24:279~283
    67 Sandberg P A.An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy[J].Nature,1983,305:19~22
    68 Sandberg P A.Nonskeletal aragonite and p CO2 in the Phanerozoic and Proterozoic[M]//Sundquist E T,Broecker W S.eds.The carbon cycle and atmospheric CO2:Natural variations Archean to present.American Geophysical Union Monograph,1985,32:585~594
    69 Stanley S M,Hardie L A.Secular oscillations in carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J].Palaeogeography Palaeoclimatology Palaeoecology,1998,144:3~19
    70 Stanley S M,Hardie L A.Hypercalcification:paleontology links plate tectonics and geochemistry to sedimentology[J].GSAToday,1999,9:2~7
    71 Stanley S M,Ries J B,Hardie L A.Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(24):153 23~153 26
    72 Stanley S M.Influence of seawater chemistry on biomineralization throughout phanerozoic time:Paleontological and experimental evidence[J].Palaeogeography Palaeoclimatology Palaeoecology,2006,232:214~236
    73 Burns S J,Mckenzie J A,Vasconcelos C.Dolmite formation and biogeochemical cycles in the Phanerozoic[J].Sedimentology,2000,47:49~61
    74 Hardie L A.On the significance of evaporites[J].Annual Review Earth and Planetary Science,1991,19:131~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700