云南勐野井钾盐矿床中Br和I的影响因素及意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence Factors and Significances of Br and I in the Mengyejing Potash Deposit,Yunnan,China
  • 作者:孙淑蕊 ; 李明慧 ; 颜茂都 ; 刘晓明 ; 方小敏
  • 英文作者:SUN Shu-rui;LI Ming-hui;YAN Mao-du;LIU Xiao-ming;FANG Xiao-min;Institute of Tibetan Plateau Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;CAS Center for Excellence in Tibetan Plateau Earth Sciences;
  • 关键词:勐野井 ; Br ; Br/Cl ; I ; I/Cl
  • 英文关键词:Mengyejing potash deposit;;Br;;Br / Cl;;I;;I / Cl
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国科学院青藏高原研究所;中国科学院大学;中国科学院青藏高原卓越中心;
  • 出版日期:2016-03-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2016
  • 期:v.35
  • 基金:国家重点基础研究发展计划项目(2013CB956400);; 中科院战略性先导科技专项B(XDB03020400);; 国家自然科学基金项目(41271100,41321061)
  • 语种:中文;
  • 页:KYDH201602024
  • 页数:8
  • CN:02
  • ISSN:52-1102/P
  • 分类号:160-167
摘要
为探究盐类矿床中Br和I元素的影响因素及其对钾盐矿床成因的指示意义,采集思茅盆地勐野井的石盐、钾盐样品,采用X射线衍射方法分析了其盐类矿物组成,用ICP-OES和离子色谱仪测试了阳离子(K~+、Ca~(2+)、Na~+、Mg~(2+))和阴离子(Cl~-、Br~-、I~-、SO_4~(2-))组成。结果显示,样品的Br含量为89.08×10~(-6)~555.45×10~(-6),高于海水含量,Br×10~3/Cl的质量比值为0.13~0.86,Br的主要影响因素是溶液的主要成分(SO_4~(2-),K~+,Ca~(2+)和Mg~(2+))和蒸发作用;I含量为0.07×10~(-6)~0.27×10~(-6),I×10~6/Cl的摩尔比值为0.03~0.11,略高于海水值,I含量随I×10~6/Cl摩尔比值的增加呈上升趋势,说明蒸发作用是影响卤水I含量的因素之一。但Br和I呈负相关,表明有机质的含量是I含量的主要影响因素,蒸发作用可能是次要影响因素,I和I×10~6/Cl摩尔比值可能是判断海陆相的潜在指标之一。
        In order to identify influence factors of Br and I of salt minerals and their implications to the metallogenesis of the potash deposit,salt samples collected from the Mengyejing potash deposit in Simao basin,Yunnan Province,have been examined by using X-ray diffraction for their textures,and ICP-OES and ion chromatograph ICS-900 for contents of their cations( K~+,Ca~(2+),Na~+and Mg~(2+)) and anions( Cl~-,Br~-,I~-,and SO_4~(2-)),respectively. Results show that Br contents of samples vary from 89. 08 ppm to 555. 45 ppm which are higher than that of the sea water. Molar Br/Cl values of samples vary from 0. 13×10~(-3)to 0. 86×10~(-3). Contents of Br are mainly affected by compositions of the solution( SO_4~(2-),K~+,Ca~(2+)and Mg~(2+)) and the solution evaporation. I contents vary from 0. 07×10~(-6)to 0. 27×10~(-6)which are slightly higher than that of the sea water. I/Cl molar ratios vary from 0. 03×10~(-6)to 0. 11×10~(-6). The positive relationship between I contents and I/Cl ratios suggest that the evaporation is one of factors on the I content of the brine. However,the negative correlation between Br and I contents suggest that the content of organic matters may played more important role than the evaporation on the content of I. I contents and I/Cl molar ratios of samples may be appliedto identify their continental or marine origins.
引文
Boeke H E.1908.ber das Kystallisationsschema der Chloride,Bromide,Jodide von Natrium,Kalium und Magnesium,sowieber das Vorkommen des Broms und das Fehlen von Jod in den Kalisalzlagersttten.Zeitschrift für Kristallographie-Crystalline Materials,45(1-6):346-391
    Braitsch O,Herrmann A G.1964.Zur Geochemie des Broms in salinaren Sedimenten TeilⅡ:Die Bildungstemperaturen primrer Sylvin und Carnallit-Gesteine.Geochimica et Cosmochimica Acta,28(7):1081-1109
    Cartwright I,Weaver T R,Fifield L K.2006.Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow:An example from the southeast Murray Basin,Australia.Chemical Geology,231(1-2):38-56
    El Tabakh M,Utha-Aroon C,Charlotte Schreiber B.1999.Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand.Sedimentary Geology,123(1-2):31-62
    Fontes J C,Matray J M.1993.Geochemistry and origin of formation brines from the Paris Basin,France:1.Brines associated with Triassic salts.Chemical Geology,109(1-4):149-175
    Gilfedder B S,Petri M,Biester H.2009.An iodine speciation and cycling in fresh waters:A case study from a humic rich headwater lake(Mummelsee).Journal of Limnology,68(2):396-408
    Gilfedder B S,Petri M,Wessels M,Biester H.2010,An iodine massbalance for Lake Constance,Germany:Insights into iodine speciation changes and fluxes.Geochimica et Cosmochimica Acta,74(11):3090-3111
    Gilfedder B S,Petri M,Wessels M,Biester H,2011.Bromine species fluxes from Lake Constance's catchment,and a preliminary lake mass balance.Geochimica et Cosmochimica Acta,75(12):3385-3401
    Herczeg A L,Dogramaci S S,Leaney F W J.2001.Origin of dissolved salts in a large,semi-arid groundwater system:Murray Basin,Australia.Marine and Freshwater Research,52(1):41-52
    Holland H D,Horita J,Seyfried Jr W E.1996.On the secular variations in the composition of Phanerozoic marine potash evaporites.Geology,24(11):993-996
    Kendrick M A,Duncan R,Phillips D.2006.Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin:Mt Isa,Australia.Chemical Geology,235(3-4):325-351
    Lu Z L,Hummel S T,Lautz L K,Hoke G D,Zhou X L,Leone J,Siegel D I.2015.Iodine as a sensitive tracer for detecting influence of organic-rich shale in shallow groundwater.Applied Geochemistry,60:29-36
    Martin J B,Gieskes J M,Torres M,Kastner M.1993.Bromine and iodine in Peru margin sediments and pore fluids:Implications for fluid origins.Geochim.Geochimica et Cosmochimica Acta,57(18):4377-4389
    Muramatsu Y,Wedepohl K H.1998.The distribution of iodine in the earth's crust.Chemical Geology,147(3-4):201-216
    Panno S V,Hackley K C,Hwang H H,Greenberg S E,Krapac I G,Landsberger S,O'Kelly D J.2006.Characterization and identification of Na-Cl sources in ground water.Ground Water,44(2):176-187
    Pennington W,Tutin M T G,Lishman J P.1971.Iodine in lake sediments in northern England and Scotland.Biological Reviews,46(2):279-313
    Rahimpour-Bonab H,Kalantarzadeh Z.2005.Origin of secondary potash deposits;a case from Miocene evaporites of NW Central Iran.Journal of Asian Earth Sciences,25(1):157-166
    Richard L,Gaona X.2011.Thermodynamic properties of organic iodine compounds.Geochim.Geochimica et Cosmochimica Acta,75(22):7304-7350
    Siemann M G,Schramm M.2000.Thermodynamic modelling of the Br partition between aqueous solutions and halite.Geochimica et Cosmochimica Acta,64(10):1681-1693
    Siemann M G.2003.Extensive and rapid changes in seawater chemistry during the Phanerozoic:Evidence from Br contents in basal halite.Terra Nova,15(4):243-248
    Sun D P,Li B X,Wang K Y,Wang L Y,Yang B.1993.A preliminary investigation on an evaporating experiment(25℃)for Qinghai Lake water,China.In:Kakihana H,Hardy H R Jr,Hoshi T,Toyokura K,eds.Seventh International Symposium on Salt.New York:Elsevier,1:560-571
    Swihart G H,Moore P B.1986.Boron isotopic composition of marine and nonmarine evaporite borates.Geochim.Geochimica et Cosmochimica Acta,50(6):1297-1301
    Taberner C,Cendón D I,Pueyo J J,Ayora C.2000.The use of environmental markers to distinguish marine vs.continental deposition and to quantify the significance of recycling in evaporite basins.Sedimentary Geology,137(3-4):213-240
    Tan H B,Ma H Z,Li B K,Zhang X Y,Xiao Y K.2010.Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos.Chinese Science Bulletin,55(27):3181-3188
    Utha-Aroon C.1993.Continental origin of the Maha Sarakham evaporites,northeastern Thailand.Journal of Southeast Asian Earth Sciences,8(1-4):193-203
    Vengosh A,Chivas A R,Starinsky A,Kolodny Y,Zhang B Z,Zhang PX.1995.Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin,Qinghai,China.Chem.Chemical Geology,120(1-2):135-154
    Wang L C,Liu C L,Fei M M,Shen L J,Zhang H,Zhao Y J.2015.First SHRIMP U-Pb zircon ages of the potash-bearing Mengyejing Formation,Simao Basin,southwestern Yunnan,China.Cretaceous Research,52:238-250
    Warren J K.1989.Evaporite sedimentology:Importance in hydrocarbon accumulation.New York:Prentice Hall,1-37
    Worden R H.1996.Controls on halogen concentrations in sedimentary formation waters.Mineralogical Magazine,60(399):259-274
    Wu S F,You C F,Valsami-Jones E,Baltatzis E,Shen M L.2012.Br/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island,Hellenic Arc.Marine Chemistry,140-141:33-43
    陈郁华.1983.黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律.地质学报,(4):379-390
    程怀德,马海州,谭红兵,许建新,张西营.2008.钾盐矿床中Br的地球化学特征及研究进展.矿物岩石地球化学通报,27(4):399-408
    韩元红,马海州,袁小龙,张西营,高东林.2011.兰坪-思茅盆地与呵叻高原钾盐矿床综合对比.盐湖研究,19(3):1-7,25.
    高翔,方勤方,姚薇,彭强,董娟,秦红,邸迎伟.2013.云南兰坪-思茅盆地勐野井钾盐矿床物质组分对成因的指示.地球学报,34(5):529-536
    李善平,马海州,陈有顺,王生祖,李五福,王钦元.2010.老挝万象盆地钾盐矿床微量元素地球化学特征及矿床的成因.地质通报,29(5):760-770
    廖宗廷,陈跃昆.2005.兰坪-思茅盆地原型的性质及演化.同济大学学报(自然科学版),33(11):1527-1531
    刘群,陈郁华,李银彩,蓝庆春,袁鹤然,阎东兰.1987.中国中、新生代陆源碎屑-化学岩型盐类沉积.北京:北京科学技术出版社,14-15,52
    牟保磊.1999.元素地球化学.北京:北京大学出版社,202-219
    曲懿华.1997.兰坪-思茅盆地与泰国呵叻盆地含钾卤水同源性研究:兼论该区找钾有利层位和地区.化工矿产地质,19(2):81-84
    曲一华,袁品泉,帅开业,张瑛,蔡克勤,贾疏源,陈朝德.1998.兰坪-思茅盆地钾盐成矿规律及预测.北京:地质出版社,1,21-22
    魏新俊,邵长铎,王弭力,赵德钧,蔡克勤,姜继学,何国权,胡文瑄.1993.柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究.北京:地质出版社,68
    吴南平,蒋少涌,廖启林,潘家永,戴宝章.2003.云南兰坪-思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究.岩石学报,19(4):799-807
    许效松,吴嘉陵.1983.云南勐野井钾盐矿床特征、微量元素地球化学及成因探讨.地球学报,5(1):17-36
    许建新.2008.云南勐野井钾盐矿床地球化学与成因研究.博士学位论文.西宁:中国科学院青海盐湖研究所
    薛春纪,陈毓川,杨建民,王登红,杨伟光,杨清标.2002.滇西兰坪盆地构造体制和成矿背景分析.矿床地质,21(1):36-44
    尹汉辉,范蔚茗,林舸.1990.云南兰坪-思茅地洼盆地演化的深部因素及幔-壳复合成矿作用.大地构造与成矿学,14(2):113-124
    袁秦,秦占杰,魏海成,盛淑蓉,山发寿.2013.云南江城勐野井组钾盐成矿时代及其古环境研究.地球学报,34(5):631-637
    张丛伟,高东林,马海州,韩文霞.2010.兰坪-思茅盆地钾盐矿床的物质来源探讨.盐湖研究,18(4):12-18
    张丛伟,高东林,张西营,唐启亮,时林.2011.兰坪-思茅盆地与楚雄盆地古新统含盐系地球化学特征对比.盐湖研究,19(3):8-14
    张西营,马海州,韩元红.2012.泰国-老挝呵叻高原钾盐矿床研究现状及展望.地球科学进展,27(5):549-556
    郑智杰,尹宏伟,张震,郑绵平,杨尖絮.2012.云南江城勐野井盐类矿床Sr同位素特征及成盐物质来源分析.南京大学学报(自然科学),48(6):719-727
    郑绵平,张震,尹宏伟,谭筱虹,于常青,施林峰,张雪飞,杨尖絮,焦建,武国朋.2014.云南江城勐野井钾盐成矿新认识.地球学报,35(1):11-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700