生物基尼龙56车用工程应用评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of the Application of Bio-based PA56 in Automotive Engineering
  • 作者:叶士兵
  • 英文作者:YE Shi-bing;Shanghai KINGFA Sci.& Tech.Co.,LTD.;Jiangsu KINGFA Sci.& Tech.Advanced Materials CO.,LTD.;Jiangsu Polymer Alloy Materials Engineering and Technology Research Center;
  • 关键词:生物基尼龙56 ; 吸水率 ; 耐热性能 ; 耐水解性能 ; 耐油性能
  • 英文关键词:bio-based PA56;;water absorption;;heat resistance;;hydrolysis resistance;;chemical resistance
  • 中文刊名:HOCE
  • 英文刊名:Synthetic Materials Aging and Application
  • 机构:上海金发科技发展有限公司;江苏金发科技新材料有限公司;江苏省高分子合金材料工程技术研究中心;
  • 出版日期:2019-06-30
  • 出版单位:合成材料老化与应用
  • 年:2019
  • 期:v.48;No.207
  • 语种:中文;
  • 页:HOCE201903002
  • 页数:6
  • CN:03
  • ISSN:44-1402/TQ
  • 分类号:13-18
摘要
对比研究了玻纤增强生物基PA56与广泛使用的玻纤增强PA66、PA6的基本物理性能、湿态性能、长期耐热以及耐化学性能,基于实验结果评估在车用工程应用中PA56替代PA66的可行性。PA56结构与PA66近似,酰胺基团密度比PA66和PA6高,分子内氢键的形成概率与PA6一样,仅为PA66的一半。因此,增强PA56的熔点(255.6℃)介于PA66 (263.3℃)和PA6(220℃)之间,自然吸水率高于PA66(1.8%)和PA6(2.3%),达到2.6%,导致增强PA56的湿态强度下降和韧性提升最为显著。增强PA56经过150℃/1000h长期热氧老化后性能保持率与增强PA66和PA6相似,表现出优异的耐热性能。长期耐溶剂实验结果显示,增强PA56的耐水解(醇解)性能最差,但是耐变速箱油性能与PA66和PA6接近。鉴于上述结果,我们认为PA56由于其较高的吸水率和较差的耐水解(醇解)性能,尚不能完全替代PA66作为工程材料在汽车产品上应用,仍需要进一步的改性研究。
        In this paper,the basic physical properties,wet-conditioned properties,long-term heat resistance and long-term chemical resistance of glass fiber reinforced bio-based PA56 and the widely used glass fiber reinforced PA66 and PA6 were systematically studied and compared. Based on the results,the feasibility of replacing PA66 with PA56 in automotive engineering applications was evaluated. The molecular structure of PA56 is similar to PA66,while the amide-group density of PA56 is higher than that of PA66 and PA6. Therefore,the melting temperature(255.6℃) of reinforced PA56 is intermediate between that of PA66(263.3℃) and that of PA6(220℃). The natural moisture absorption of reinforced PA56 reaches 2.6%,higher than that of PA66(1.8%) and PA6(2.3%),which results in an obvious decline in the tensile strength and a significant increase in the toughness. After a long-term heat age at 150℃ for 1000 h,the performance retention of reinforced PA56 is similar to those of reinforced PA66 and PA6,showing an excellent heat resistance. Chemical resistance test results indicate that the long-term hydrolysis(alcoholysis) resistance of the reinforced PA56 is the worst,but the long-term transmission oil resistance is close to that of PA66 and PA6. In view of the above results,we believe that PA56 cannot completely replace PA66 as an engineering material in automotive products due to its high water absorption and poor hydrolysis(alcoholysis) resistance,further modification technique is needed.
引文
[1] 福本修.聚酰胺树脂手册[M].北京:中国石化出版社,1994:3-30.
    [2] 刘畅,刘可,李圆圆,等.PA66/6的制备及性能[J].工程塑料应用,2019 (1):1.
    [3] 李灿浩,林星五,程新生.尼龙66复合材料研究进展[J].广州化工,2012,40(22):34-36.
    [4] 何素芹,吕励耘,朱诚身,等.成核剂对尼龙66熔融与结晶的影响[J].塑料工业,2004,32(2):39-40.
    [5] Matsunaga T,Sato Y,Goda K.Major cause of strength improvement of a ramie/PA composite with low fiber contents[J].Advanced Industrial and Engineering Polymer Research,2018,1(1):93-98.
    [6] 李秀峥,李澜鹏,曹长海,等.生物基聚酰胺及其单体研究进展[J].工程塑料应用,2018 (7):138-141.
    [7] 吴田田,王学利,俞建勇,等.生物基尼龙56的非等温结晶性能研究[J].纺织导报,2017 (5):98-100.
    [8] Morales-Gámez L,Soto D,Franco L,et al.Brill transition and melt crystallization of nylon 56:An odd-even polyamide with two hydrogen-bonding directions[J].Polymer,2010,51(24):5788-5798.
    [9] 陈美玉,来悦,孙润军,等.生物基聚酰胺56纤维的结晶行为[J].纺织学报,2017,38(12):7-13.
    [10] 郭亚飞,郝新敏,李岳玲,等.生物基尼龙56与尼龙6、尼龙66纤维结构和性能对比研究[C]//中国化纤协会优秀学术论文(上册).2014:169-174.
    [11] 戴家桐,邵静玲.聚酰胺复合材料在轨道交通中的应用[J].上海塑料,2013 (2):17-23.
    [12] 高春雨.我国车用改性塑料的发展趋势[J].上海塑料,2017 (2):1-7.
    [13] 郑素萍,王从科,张霞,等.尼龙66吸水性测试的研究[J].计量与测试技术,2019,46(1):28-29.
    [14] Murthy N S,Akkapeddi M K,Orts W J.Analysis of lamellar structure in semicrystalline polymers by studying the absorption of water and ethylene glycol in nylons using small-angle neutron scattering[J].Macromolecules,1998,31(1):142-152.
    [15] 王志亮.聚酰胺6在水热条件下的溶解、水解及结晶行为的研究[D].上海:东华大学,2016.
    [16] 王海利,黄仁军,吴盾,等.热氧老化对尼龙6结晶行为与性能的影响[J].高分子材料科学与工程,2013,29(8):88-92.
    [17] 李荣福,孙涛,胡兴洲.聚酰胺热氧稳定化研究[J].合成材料老化与应用,1998(4):7-17.
    [18] 贾娟花,苑会林.耐水解玻璃纤维增强尼龙66的制备及性能研究[J].工程塑料应用,2005,33(8):10-12.
    [19] 周长汶,周磊,祝一民,等.增强耐水解尼龙66用玻璃纤维短切原丝的开发研究[J].玻璃纤维,2011 (001):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700