寒区弧底梯形衬砌渠道冻胀破坏的尺寸效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Size effect on frost heave damage for lining trapezoidal canal with arc-bottom in cold regions
  • 作者:王正中 ; 刘少军 ; 王羿 ; 刘铨鸿 ; 葛建锐
  • 英文作者:WANG Zhengzhong;LIU Shaojun;WANG Yi;LIU Quanhong;GE Jianrui;Cold and Arid Regions Water Engineering Safety Research Center, Northwest A&F University;Key Laboratory of Arid Agriculture Soil and Water Engineering of Ministry of Education,Northwest A&F University;
  • 关键词:寒区 ; 弧底梯形衬砌渠道 ; 水热力三场耦合 ; 冻胀破坏 ; 尺寸效应
  • 英文关键词:cold regions;;lining trapezoidal canal with arc-bottom;;thermal-moisture-mechanic coupling;;frost heave damage;;size effect
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:西北农林科技大学旱区寒区水工程安全研究中心;西北农林科技大学旱区农业水土工程教育部重点实验室;
  • 出版日期:2018-07-26 14:49
  • 出版单位:水利学报
  • 年:2018
  • 期:v.49;No.502
  • 基金:国家重点研发计划项目(2017YFC0405101);; 中央高校科研业务费科技创新专项;; 博士点基金项目(20120204110024)
  • 语种:中文;
  • 页:SLXB201807004
  • 页数:11
  • CN:07
  • ISSN:11-1882/TV
  • 分类号:33-43
摘要
为探明地下水埋深、冻深及渠深对冻土地基上弧底梯形衬砌渠道冻胀破坏的影响规律,依据毛细理论将渠道冻胀分为封闭系统、半开放系统和开放系统;基于冻土水热力三场耦合理论,利用多场耦合软件COMSOL Multiphysics模拟研究了30组不同尺寸衬砌渠道的冻胀位移场和应力场。结果表明:规范建议的衬砌厚度内,渠道规模越大越窄深、冻深越大、地下水埋深越浅,则衬砌渠道冻胀破坏越严重。封闭系统,中小型衬砌渠道为渠底中心下表面拉裂,大型渠道为渠底中心下表面和距渠顶2/3坡长处上表面拉裂;半开放系统,中小型渠道为渠底中心上表面拉裂,大型渠道为渠底中心上表面和坡脚下表面拉裂;开放系统,小型渠道为渠底中心上表面拉裂,中型渠道为坡脚上表面拉裂,大型渠道为渠底中心下表面和距渠顶2/3坡长处上表面拉裂。该研究揭示了渠道衬砌冻胀破坏的尺寸效应,对弧底梯形衬砌渠道抗冻胀设计及衬砌结构合理设缝具有指导意义和定量化参考。
        In order to find out the influence of groundwater table, frozen depth and canal height on the frost heave damage for lining trapezoidal canal with arc-bottom on the frozen soil base,a classification system for frozen soil was described as closed system, semi-open system and open system in terms of themaximum capillary rise. Based on the thermal-moisture-mechanic coupled theory for frozen soil,30 sets oflined canals with different sections were performed with the assistance of COMSOL Multiphysics software.The results of calculated displacement field and stress field show that within the range of the thickness oflining suggested by standard, the larger the scale of the canal with narrower and deeper section, and thelarger the frozen depth and the more shallow the groundwater table are, the more serious damage of frostheave for lining canal will be. For the closed system,the small and medium size canals can be cracked atthe center on the lower surface of the lining canal bed, while the large-size canals can be cracked bothat the center on the lower lining surface of the canal bed and at the 2/3 height from the top of canal onthe upper surface of the lining canal slope. For the semiopen system, small and medium size canals canbe cracked at the center on the upper surface of the lining canal bed, while large-size canals will becracked both at the center on the upper lining surface of the canal bed and on the lower surface of the lin-ing canals slope foot. For the open system, small size canals can be cracked at the center on the uppersurface of the lining canal bed,medium size canals can be cracked on the upper surface of the lining canal foot, while the large-size canals can be cracked both at the center on the lower lining surface of thecanal bed and at the 2/3 height from the top of canal on the upper surface of the lining canal slope. Theresults revealed the size effect on frost heave damage for lining canals, providing a guiding significanceand a quantitative reference for the anti-frost heave design and reasonable joints of lining construction for lining trapezoidal canal with arc-bottom.
引文
[1]侯宝英.西北地区节水农业发展的关键技术[J].中国水利,2002(4):57-58.
    [2]王正中,李甲林,陈涛,等.弧底梯形渠道混凝土衬砌冻胀破坏的力学模型研究[J].农业工程学报,2008,24(1):18-23.
    [3]安鹏,邢义川,张爱军,等.弧底梯形渠道抗冻胀结构优化与数值模拟[J].灌溉排水学报,2017,36(11):56-62.
    [4]STEPHEN T.The mechanics of frost heaving[J].Journal of Geology,1930,38(4):303-317.
    [5]O'NEILL K,MILLER R D.Exploration of a rigid ice model of frost heave[J].Water Resources Research,1985,21(3):281-296.
    [6]王正中.梯形渠道砼衬砌冻胀破坏的力学模型研究[J].农业工程学报,2004(3):24-29.
    [7]王正中,芦琴,郭利霞,等.基于昼夜温度变化的混凝土衬砌渠道冻胀有限元分析[J].农业工程学报,2009,25(7):1-7.
    [8]王正中,沙际德,蒋允静,等.正交各向异性冻土与建筑物相互作用的非线性有限元分析[J].土木工程学报,1999,32(3):55-60.
    [9]石娇,王正中,张丰丽,等.高地下水埋深弧底梯形混凝土衬砌渠道冻胀断裂破坏力学模型及应用[J].西北农林科技大学学报(自然科学版),2015,43(1):213-219.
    [10]孙杲辰,王正中,娄宗科,等.高地下水埋深弧底梯形渠道混凝土衬砌冻胀破坏力学模型探讨[J].西北农林科技大学学报(自然科学版),2012,40(12):201-206.
    [11]肖旻,王正中,刘铨鸿,等.考虑地下水位影响的现浇混凝土梯形渠道冻胀破坏力学分析[J].农业工程学报,2017,33(11):91-97.
    [12]肖旻,王正中,刘铨鸿,等.考虑冻土与结构相互作用的梯形渠道冻胀破坏弹性地基梁模型[J].水利学报,2017,48(10):1229-1239.
    [13]LI Z,LIU S H,FENG Y T,et al.Numerical study on the effect of frost heave prevention with different canal lining structures in seasonally frozen ground regions[J].Cold Regions Science&Technology,2013,85(1):242-249.
    [14]刘旭东,王正中,闫长城,等.基于数值模拟的双层薄膜防渗衬砌渠道抗冻胀机理探讨[J].农业工程学报,2011,27(1):29-35.
    [15]李爽,王正中,高兰兰,等.考虑混凝土衬砌板与冻土接触非线性的渠道冻胀数值模拟[J].水利学报,2014,45(4):497-503.
    [16]刘月,王正中,王羿,等.考虑水分迁移及相变对温度场影响的渠道冻胀模型[J].农业工程学报,2016,32(17):83-88.
    [17]WATANABE K,FLURY M.Capillary bundle model of hydraulic conductivity for frozen soil[J].Water Resources Research,2008,44(12):1-9.
    [18]ZHOU J Z,WEI C F,WEI H Z,et al.Experimental and theoretical characterization of frost heave and ice lenses[J].Cold Regions Science and Technology,2014,104/105(3):76-87.
    [19]TALAMUCCI F.Freezing processes in porous media:formation of ice lenses,swelling of the soil[J].Mathematical and Computer Modelling,2003,37(5):595-602.
    [20]王正中,刘旭东,陈立杰,等.刚性衬砌渠道不同纵缝削减冻胀效果的数值模拟[J].农业工程学报,2009,25(11):1-7.
    [21]BONACINA C,COMINI G,FASANO A,et al.Numerical solution of phase-change problems[J].International Journal of Heat&Mass Transfer,1973,16(10):1825-1832.
    [22]WETTLAUFER J S,WORSTER M G.Dynamics of premelted films:frost heave in a capillary[J].Phys.Rev.E.,1995,51(5):4679-4689.
    [23]GB/T 50662-2011.水工建筑物抗冰冻设计规范[S].北京:中国计划出版社,2011.
    [24]ZHOU J,LI D.Numerical analysis of coupled water,heat and stress in saturated freezing soil[J].Cold Regions Science&Technology,2012,72(72):43-49.
    [25]刘晓燕,赵军,石成,等.土壤恒温层温度及深度研究[J].太阳能学报,2007,28(5):494-498.
    [26]费康,刘汉龙,孔纲强,等.热力耦合边界面模型在COMSOL中的开发应用[J].岩土力学,2017,38(6):1819-1826.
    [27]郭利霞,王正中,李甲林,等.梯形与准梯形渠道冻胀有限元分析[J].节水灌溉,2007(4):44-47.
    [28]周家作.土在冻融过程中水、热、力的相互作用研究[D].北京:中国科学院大学,2012.
    [29]GB/T 50600-2010.渠道防渗工程技术规范[S].北京:中国计划出版社,2011.
    [30]SL252-2017.水利水电工程等级划分及洪水标准[S].北京:中国水利水电出版社,2017.
    [31]GB0288-99.灌溉与排水工程设计规范[S].北京:中国计划出版社,1999.
    [32]白剑.宁夏引黄灌区小型U形渠道抗冻胀试验与衬砌结构研究[D].银川:宁夏大学,2014.
    [33]李超.弧底梯形混凝土衬砌渠道冻胀力学模型及数值模拟[D].石河子:石河子大学,2010.
    [34]张永辉.梯形渠道弧形底混凝土防渗结构抗冻性能的试验研究[D].太原:太原理工大学,2010.
    [35]陈向阳.大禹渡弧底梯形渠道裂缝产生原因及处理措施[J].山西水利,2004,20(3):64-64.
    [36]刘旭东.混凝土衬砌渠道抗冻胀技术措施及其机理研究[D].杨凌:西北农林科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700