二维纳米片组成的花状铁醇盐及其微纳结构三氧化二铁衍生物的储锂性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Performances of Nano-Micro Structural Ferric Oxide from Flower-Like Iron Alkoxides
  • 作者:李苞 ; 刘晓阳 ; 李凡 ; Esmail ; Husein ; M.Salhabib ; 赵吉路 ; 王宝
  • 英文作者:LI Bao;LIU Xiaoyang;LI Fan;Esmail Husein M.Salhabib;ZHAO Jilu;WANG Bao;School of Chemistry and Chemical Engineering,Henan Normal University;State Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences;
  • 关键词:花状铁醇盐 ; 微纳结构 ; 三氧化二铁 ; 锂离子电池 ; 负极材料
  • 英文关键词:flower-like iron alkoxides;;micro-nano structure;;ferric oxide;;Li-ion batteries;;anode materials
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:河南师范大学化学化工学院;中国科学院过程工程研究所,生化工程国家重点实验室;
  • 出版日期:2018-03-10
  • 出版单位:应用化学
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金(51772296,51672071,21203056);; 高等学校学科创新引智计划(D17007)资助~~
  • 语种:中文;
  • 页:YYHX201803013
  • 页数:10
  • CN:03
  • ISSN:22-1128/O6
  • 分类号:117-126
摘要
Fe_2O_3作为锂电池负极材料具有诸多优点,但其较低的本征电导率和充放电循环过程中材料粉化使得其电化学储锂性能有待改善。本文以具有花状微纳结构的铁醇盐为反应中间体,在空气气氛下烧结制备出具有花状微纳结构的铁基负极材料Fe_2O_3。纳米花状的铁醇盐可以在低烧结温度下转化为目标产物,从而使得产物能够保持中间体的形貌。300℃热处理条件下,所得样品在电流密度为200 m A/g时首次放电比容量为1360 m A·h/g,循环100次后的容量仍然达到515.6 m A·h/g;相比之下,450和800℃热处理所得样品100次循环后,比容量分别为247.6和206.7 m A·h/g。微纳结构在增加材料的活性的同时,也能够抑制材料的粉化现象,因而所制得的材料表现出较大的比容量和良好的循环性能,为解决Fe_2O_3负极材料循环性能差的问题提供了思路。
        Iron-based anode materials for lithium ion batteries has attracted wide attentions due to its high capacity,rich resource,environmentally friendly property,etc. However,its low-conductance( comparing to carbon-based anode materials) and high-volume change during charge/discharge cycles results in a poor rate performance and serious capacity fade after long-term cycles. In this paper,flower-like iron-based anode materials( Fe_2O_3) were synthesized by sintering the iron alkoxides precursor with the same nano-structure under the atmosphere of air. The as-obtained anode materials possess high reactivity from nanosheets of iron alkoxides,which can lower the sintering temperature and allow the product to keep the morphology of its precursor. The sample obtained by heating iron alkoxides precursor under 300 ℃ shows an initial specific discharge capacity of 1360 m A·h/g at a current density of 200 m A/g. Moreover,the specific capacity of the sample is 515. 6 m A·h/g after 100 charge/discharge cycles at 200 m A/g,while the samples obtained after calcining the precursor under 450 and 800 ℃ present a capacity of 247. 6 and 206. 7 m A·h/g,respectively,after 100 charge/discharge cycles. The as-obtained Fe_2O_3 with micro/nano-structure not only improves high reactivity due to the high special surfaces,but also inhibits its pulverization during charge/discharge process.Therefore,the as-obtained materials with hollow micro/nano-structure show both high discharge capacity and good cycle performances,which affords us another method to solve the problem of the capacity fade of Fe_2O_3 as anode material for lithium ion battery.
引文
[1]Lv X,Deng J,Wang B,et al.Gamma-Fe2O3@CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy[J].Chem Mater,2017,29(8):3499-3506.
    [2]Zhong Y,Fan H,Chang L,et al.Novel Iron Oxide Nanotube Arrays as High-Performance Anodes for Lithium Ion Batteries[J].J Power Sources,2015,296:255-260.
    [3]Wang J,Yang G,Wang L,et al.Synthesis of One-Dimensional Ni Fe2O4Nanostructures:Tunable Morphology and HighPerformance Anode Materials for Li Ion Batteries[J].J Mater Chem A,2016,4(22):8620-8629.
    [4]Grinbom G,Duveau D,Gershinsky G,et al.Silicon/Hollow Gamma-Fe2O3Nanoparticles as Efficient Anodes for Li-Ion Batteries[J].Chem Mater,2015,27(7):2703-2710.
    [5]Zhang Z J,Wang Y X,Chou S L,et al.Rapid synthesis of Alpha-Fe2O3/r GO Nanocomposites by Microwave Autoclave as Superior Anodes for Sodium-Ion Batteries[J].J Power Sources,2015,280:107-113.
    [6]Poizot P,Laruelle S,Grugeon S,et al.Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries[J].Nature,2000,407(6803):496-499.
    [7]Jin S,Deng H,Long D,et al.Facile Synthesis of Hierarchically Structured Fe3O4/Carbon Micro-Flowers and Their Application to Lithium-Ion Battery Anodes[J].J Power Sources,2011,196(8):3887-3893.
    [8]Cai D,Li D,Ding LX,et al.Interconnected Alpha-Fe2O3Nanosheet Arrays as High-Performance Anode Materials for Lithium-Ion Batteries[J].Electrochim Acta,2016,192:407-413.
    [9]Kong D,Cheng C,Wang Y,et al.Seed-assisted Growth of Alpha-Fe2O3Nanorod Arrays on Reduced Graphene Oxide:A Superior Anode for High-Performance Li-Ion and Na-Ion Batteries[J].J Mater Chem A,2016,4(30):11800-11811.
    [10]Wang D,Dong H,Zhang H,et al.Enabling a High Performance of Mesoporous alpha-Fe2O3Anodes by Building a Conformal Coating of Cyclized-PAN Network[J].ACS Appl Mater Interfaces,2016,8(30):19524-19532.
    [11]Chen S,Xin Y,Zhou Y,et al.Robust Alpha-Fe2O3Nanorod Arrays with Optimized Interstices as High-Performance 3D Anodes for High-Rate Lithium Ion Batteries[J].J Mater Chem A,2015,3(25):13377-13383.
    [12]Cho J S,Hong Y J,Kang Y C.Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries[J].ACS Nano,2015,9(4):4026-4035.
    [13]Balogun M S,Wu Z,Luo Y,et al.High Power Density Nitridated Hematite(Alpha-Fe2O3)Nanorods as Anode for HighPerformance Flexible Lithium Ion Batteries[J].J Power Sources,2016,308:7-17.
    [14]Lu J,Peng Q,Wang Z,et al.Hematite Nanodiscs Exposing(001)Facets:Synthesis,Formation Mechanism and Application for Li-Ion Batteries[J].J Mater Chem A,2013,1(17):5232-5237.
    [15]Reddy M V,Yu T,Sow C H,et al.α-Fe2O3Nanoflakes as an Anode Material for Li-Ion Batteries[J].Adv Funct Mater,2007,17(15):2792-2799.
    [16]Jiang X,Wang Y,Herricks T,et al.Ethylene Glycol-Mediated Synthesis of Metal Oxide Nanowires[J].J Mater Chem,2004,14(4):695-703.
    [17]Chakroune N,Viau G,Ammar S,et al.Synthesis,Characterization and Magnetic Properties of Disk-Shaped Particles of a Cobalt Alkoxide:CoⅡ(C2H4O2)[J].New J Chem,2005,29(2):355-361.
    [18]Li X,Zhang B,Ju C,et al.Morphology-Controlled Synthesis and Electromagnetic Properties of Porous Fe3O4Nanostructures from Iron Alkoxide Precursors[J].J Phys Chem C,2011,115(25):12350-12357.
    [19]Zhong L S,Hu J S,Liang H P,et al.Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment[J].Adv Mater,2006,18(18):2426-2431.
    [20]Deng H G,Jin S L,Zhan L,et al.Morphology-Controlled Synthesis of Fe3O4/Carbon Nanostructures for Lithium Ion Batteries[J].New Carbon Mater,2014,29(4):301-308.
    [21]Gao G,Lu S,Dong B,et al.One-Pot Synthesis of Carbon Coated Fe3O4Nanosheets with Superior Lithium Storage Capability[J].J Mater Chem A,2015,3(8):4716-4721.
    [22]Han Y,Wang Y,Li L,et al.Preparation and Electrochemical Performance of Flower-Like Hematite for Lithium-Ion Batteries[J].Electrochim Acta,2011,56(9):3175-3181.
    [23]Lin Y M,Abel P R,Heller A,et al.α-Fe2O3Nanorods as Anode Material for Lithium Ion Batteries[J].J Phys Chem Lett,2011,2(22):2885-2891.
    [24]Zhou G W,Wang J,Gao P,et al.Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3Nanoparticles for Lithium Ion Battery Anodes[J].Ind Eng Chem Res,2012,52(3):1197-1204.
    [25]Zhu J,Yin Z,Yang D,et al.Hierarchical Hollow Spheres Composed of Ultrathin Fe2O3Nanosheets for Lithium Storage and Photocatalytic Water Oxidation[J].Energ Environ Sci,2013,6(3):987-993.
    [26]ZHANG Yu.Synthesis and Characterizations of Fe3O4Anode Materials for Lithium Ion Batteries[D].Changchun:Jilin University,2014(in Chinese).张宇.锂离子电池负极材料Fe3O4的制备与性质研究[D].长春:吉林大学,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700