三氧化二铁和碳复合材料在锂离子电池负极中的研究新进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in ferric oxide-carbon composites as anodes in lithium-ion batteries
  • 作者:孙长兵 ; 陈思浩
  • 英文作者:SUN Chang-bing;CHEN Si-hao;College of Chemistry and Chemical Engineering,Shanghai University of Engineering Science;
  • 关键词:三氧化二铁 ; 碳纤维 ; 石墨烯 ; 碳纳米管 ; 锂离子电池 ; 负极材料
  • 英文关键词:ferric oxide;;carbon fiber;;graphene;;carbon nanotubes;;lithium-ion batteries;;anodes
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:上海工程技术大学化学化工学院;
  • 出版日期:2018-04-25 09:45
  • 出版单位:现代化工
  • 年:2018
  • 期:v.38;No.380
  • 语种:中文;
  • 页:XDHG201806014
  • 页数:5
  • CN:06
  • ISSN:11-2172/TQ
  • 分类号:65-69
摘要
综述了三氧化二铁和碳纤维、石墨烯、碳纳米管复合材料在锂离子电池负极方面的最近3年的研究成果,分析了复合材料的优缺点,并对锂离子电池负极材料的发展进行了展望。
        The research progresses in the applications of ferric oxide/graphene/carbon nanotube composite material as anodes in lithium-ion batteries are reviewed in detail.The advantages and disadvantages of this composite materials are analyzed,and the development of anode materials for lithium ion battery is prospected.
引文
[1]Chen Y M,Yu X Y,Li Z,et al.Hierarchical Mo S2tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries[J].Science Advances,2016,2(7):e1600021.
    [2]Yan C,Chen G,Zhou X,et al.Template-based engineering of carbon-doped Co3O4hollow nanofibers as anode materials for lithium-ion batteries[J].Advanced Functional Materials,2016,26(9):1428-1436.
    [3]Deng C,Lau M L,Barkholtz H M,et al.Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature[J].Nanoscale,2017,9(30):10757-10763.
    [4]Zhang T,Zhu C,Shi Y,et al.Synthesis of Fe2O3in situ on the surface of mesoporous carbon from alginate as a high-performance anode for lithium-ion batteries[J].Materials Letters,2017,205:10-14.
    [5]Liang J,Xiao C,Chen X,et al.Porousγ-Fe2O3spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials[J].Nanotechnology,2016,27(21):215403.
    [6]Zhu X,Ren W,Cheng C,et al.Three-dimensional carbon@Fe2O3@Sn O2hierarchical inverse opals arrays as Li-ion battery anode with improved cycling life and rate capability[J].Chemistry Select,2017,2(11):3223-3230.
    [7]Wu F,Huang R,Mu D,et al.Controlled synthesis of graphitic carbon-encapsulatedα-Fe2O3nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property[J].Electrochimica Acta,2016,187:508-516.
    [8]Yan Y,Tang H,Li J,et al.Self-assembly synthesis of a unique stable cocoon-like hematite@C nanoparticle and its application in lithium ion batteries[J].Journal of Colloid and Interface Science,2017,495:157-167.
    [9]Ding C,Zhou W,Wang B,et al.A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries[J].Nanotechnology,2017,28(34):345404.
    [10]Xu X,Wan Y,Liu J,et al.Encapsulating iron oxide@carbon in carbon nanofibers as stable electric conductive network for lithiumion batteries[J].Electrochimica Acta,2017,246:766-775.
    [11]Hu J,Sun C F,Gillette E,et al.Dual-template ordered mesoporous carbon/Fe2O3nanowires as lithium-ion battery anodes[J].Nanoscale,2016,8(26):12958-12969.
    [12]Cai X,Lin H,Zheng X,et al.Facile synthesis of porous iron oxide rods coated with carbon as anode of high energy density lithium ion battery[J].Electrochimica Acta,2016,191:767-775.
    [13]Zhu J,Lu Y,Chen C,et al.Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity[J].Journal of Alloys and Compounds,2016,672:79-85.
    [14]Joshi B N,An S,Kim Y I,et al.Flexible freestanding Fe2O3-Sn Oxcarbon nanofiber composites for Li ion battery anodes[J].Journal of Alloys and Compounds,2017,700:259-266.
    [15]Lv X,Zhu Y,Yang T,et al.Liquid-solid-solution assembly of morphology-controllable Fe2O3/graphene nanostructures as high-performance LIB anodes[J].Ceramics International,2016,42(16):19006-19011.
    [16]Kong D,Cheng C,Wang Y,et al.Seed-assisted growth ofα-Fe2O3nanorod arrays on reduced graphene oxide:A superior anode for high-performance Li-ion and Na-ion batteries[J].Journal of Materials Chemistry A,2016,4(30):11800-11811.
    [17]Meng J K,Fu L,Liu Y S,et al.Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersedα-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries[J].Electrochimica Acta,2017,224:40-48.
    [18]Jiang T,Bu F,Feng X,et al.Porous Fe2O3nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery[J].ACS Nano,2017,11(5):5140-5147.
    [19]Liu L,Yang X,Lv C,et al.Seaweed-derived route to Fe2O3hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance[J].ACS Applied Materials&Interfaces,2016,8(11):7047-7053.
    [20]Lee K S,Park S,Lee W,et al.Hollow nanobarrels ofα-Fe2O3on reduced graphene oxide as high-performance anode for lithium-ion batteries[J].ACS Applied Materials&Interfaces,2016,8(3):2027-2034.
    [21]Qi X,Zhang H B,Xu J,et al.Highly efficient high-pressure homogenization approach for scalable production of high-quality graphene sheets and sandwich-structuredα-Fe2O3/Graphene hybrids for high-performance lithium-ion batteries[J].ACS Applied Materials&Interfaces,2017,9(12):11025-11034.
    [22]Lee J G,Joshi B N,Lee J H,et al.Stable high-capacity lithium ion battery anodes produced by supersonic spray deposition of hematite nanoparticles and self-Healing reduced graphene oxide[J].Electrochimica Acta,2017,228:604-610.
    [23]Zhao Y,Zhai X,Yan D,et al.Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3nanosheets for lithium storage[J].Electrochimica Acta,2017,243:18-25.
    [24]Zhu X,Jiang X,Chen X,et al.Fe2O3amorphous nanoparticles/graphene composite as high-performance anode materials for lithiumion batteries[J].Journal of Alloys and Compounds,2017,711:15-21.
    [25]Zeng W,Zheng F,Li R,et al.Template synthesis of Sn O2/α-Fe2O3nanotube array for 3D lithium ion battery anode with large areal capacity[J].Nanoscale,2012,4(8):2760-2765.
    [26]Lee K,Shin S,Degen T,et al.In situ analysis of Sn O2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries[J].Nano Energy,2017,32:397-407.
    [27]Gu Y,Jiao Z,Wu M,et al.Construction of point-line-plane(0-1-2dimensional)Fe2O3-Sn O2/graphene hybrids as the anodes with excellent lithium storage capability[J].Nano Research,2017,10(1):121-133.
    [28]Sehrawat P,Julien C,Islam S S.Carbon nanotubes in Li-ion batteries:A review[J].Materials Science and Engineering:B,2016,213:12-40.
    [29]Gu T,Wei B.High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled Mn O2/CNT and Fe2O3/CNT macrofilms[J].Journal of Materials Chemistry A,2016,4(31):12289-12295.
    [30]Gao G,Jin Y,Zeng Q,et al.Carbon nanotube-wrapped Fe2O3anode with improved performance for lithium-ion batteries[J].Beilstein Journal of Nanotechnology,2017,8:649-656.
    [31]Fu Y,Wei Q,Lu B,et al.Stem-like nano-heterostructural MWCNTs/α-Fe2O3@Ti O2composite with high lithium storage capability[J].Journal of Alloys and Compounds,2016,684:419-427.
    [32]Yu W J,Zhang L,Hou P X,et al.High reversible lithium storage capacity and structural changes of Fe2O3nanoparticles confined inside carbon nanotubes[J].Advanced Energy Materials,2016,6(3):1501755.
    [33]Wang Y,Guo J,Li L,et al.High-loading Fe2O3/SWNT composite films for lithium-ion battery applications[J].Nanotechnology,2017,28:345703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700