缝洞型油藏三维可视化模型底水驱油水界面特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research into characteristics of the oil-water interface during bottom water flooding in a fractured-vuggy reservoir by a 3-D visual model
  • 作者:屈鸣 ; 侯吉瑞 ; 李军 ; 谭涛 ; 郭臣 ; 石媛丽
  • 英文作者:QU Ming;HOU Jirui;LI Jun;TAN Tao;GUO Chen;SHI Yuanli;Research Institute of Enhanced Oil Recovery, China University of Petroleum-Beijing;Sinopec Northwest China Petroleum Bureau;PetroChina Huabei Oilfield Company;
  • 关键词:缝洞型油藏 ; 三维可视化模型 ; 底水驱 ; 油水界面
  • 英文关键词:fractured-vuggy reservoir;;3-D visual fractured-vuggy reservoir model;;bottom water flooding;;oil-water interface
  • 中文刊名:SYKE
  • 英文刊名:Petroleum Science Bulletin
  • 机构:中国石油大学(北京)提高采收率研究院;中国石油化工股份有限公司西北油田分公司;中国石油天然气股份有限公司华北油田分公司;
  • 出版日期:2018-12-15
  • 出版单位:石油科学通报
  • 年:2018
  • 期:v.3;No.11
  • 基金:国家科技重大专项“缝洞型油藏泡沫辅助气驱提高采收率技术研究”(2016ZX05014-004-004),国家科技重大专项“缝洞型油藏注气提高采收率机理研究”(2016ZX05014-004-001)联合资助
  • 语种:中文;
  • 页:SYKE201804006
  • 页数:12
  • CN:04
  • ISSN:10-1405/TE
  • 分类号:60-71
摘要
缝洞型碳酸盐岩油藏以溶洞和裂缝为主要储集空间,具有较强的非均质性。为了真实反映缝洞型油藏底水驱过程中油水界面特征,以塔河油田S48缝洞单元为基础,设计并制作缝洞型油藏三维可视化物理模型进行底水驱室内实验,对缝洞单元宏观油水界面特征、缝洞组合油水界面特征、底水锥进油水界面特征、填充物对油水界面特征的影响等进行定性和定量分析。研究结果表明:缝洞单元内,宏观油水界面高度差加剧了油藏内部流场的不均匀分布。水体垂直进入上部溶洞时,实际水体凸起高度大于静止状态下的水体凸起高度,我们将这种现象定义为"泉眼效应"。缝洞组合中,缝洞油水界面受润湿性、弯曲液面附加压力、连通性的影响,存在高度差,油水界面无因次高度差与裂缝采收率之间存在负相关性;盲端洞中油水界面呈凸液面,底水可抬升油水液面高度和油水凸液面凸起高度。溶洞井和裂缝井底部发生底水锥进时,油水界面特征不同,裂缝井井底锥进现象比溶洞井井底锥进现象更为明显。受填充物润湿性影响,油水界面在填充区域上升较快,易形成窜流通道,局部没有统一的油水界面,填充物所在区域流体呈现渗流特征。室内研究结果可为缝洞型碳酸盐岩油藏矿场底水驱开发方案设计及剩余油挖潜提供参考。
        Caves and fractures are the main oil space in a fractured-vuggy carbonate reservoir which has strong heterogeneity. In order to research the characteristics of the oil-water interface during bottom water flooding, a 3-D visual fractured-vuggy reservoir model was designed and built on the basis of the S48 fractured-vuggy unit in the Tahe oil field. Using this model, bottom water flooding experiments were conducted, which led to the analysis of the fracture-vuggy unit oil-water interface characteristics, fracture-vuggy connections, oil-water interface characteristics, bottom water coning oil-water interface characteristics and filler's influence on oil-water interface characteristics. The experiment results show that: in certain fractured-vuggy units, macroscopic oil-water interface height differences lead to stronger non-uniform flow distribution. When bottom water flowed vertically into a cave, the actual water bump height was higher than the height of the stationary state which was only affected by interfacial tension and gravity. We define this phenomenon as the "spring effect". In fractured-vuggy connections, the oil-water interface height in fractures was different from that in caves, the height difference was influenced by wettability, additional pressure on curved surfaces and connections of fractures and caves. Oil-water interface dimensionless height difference and oil recovery in fractures were negatively correlated. The oil-water interface in blind caves was convex, the bottom water lifts both the oil-water interface height and the convex surface height. The characteristics of oil-water interface were different when bottom water coning happened from wells in caves or fractures. What is more, fillers made a great influence on oil-water interfaces. This appeared as seepage characteristics in filling areas, the oil-water interface in the region of the filling lifting fast and forming water channels easily. There was no same oil-water interface in part. The result of experiments provides a theoretical basis for bottom water flooding and enhanced oil recovery in fractured-vuggy carbonate reservoirs.
引文
[1]王敬,刘慧卿,徐杰,张宏方.缝洞型油藏剩余油形成机制及分布规律[J].石油勘探与开发, 2012,(05):585-590.[WANG J,LIU H Q, XU J, ZHANG H F. Formation mechanism and distribution law of remaining oil in fracture-cavity reservoirs[J], Petroleum Exploration and Development, 2012, 39(5):585-590.]
    [2]侯吉瑞,张丽,李海波,等.碳酸盐岩缝洞型油藏氮气驱提高采收率的影响因素[J].油气地质与采收率, 2015, 22(5):64-68.[HOU J R, ZHANG L, LI H B, et al. The EOR influence factor of N2 flooding in fractured-vuggy carbonate reservoir[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(5):64-68.]
    [3]郑泽宇,朱倘仟,侯吉瑞,等.碳酸盐岩缝洞型油藏注氮气驱后剩余油可视化研究[J].油气地质与采收率, 2016, 23(2):93-97.[ZHENG Z Y, ZHU C Q, HOU J R, et al. Visualization research of remaining oil after nitrogen injection in fractured-vuggy carbonate reservoir[J]. Petroleum Geology And Recovery Efficiency, 2016, 23(2):93-97.]
    [4]KANG Y Y, TANG D B. An approach to product solution generation and evaluation based on the similarity theory and Ant Colony Optimisation[J]. International Journal of Computer Intergrated Manufacturing. 2014. 27(12):1090-1104.
    [5]刘中春.塔河缝洞型油藏剩余油分析与提高采收率途径[J].大庆石油地质与开发, 2015, 34(2):62-68.[LIU Z C. Analyses of the remained oil and EOR methods for Tahe paleokarst reservoirs[J]. Petroleum Geology&Oilfield Development in Daqing, 2015, 34(2):62-68.]
    [6]CRUZ H J, ISLAS J R, PEREZ R C, et al. Oil displacement by water in vuggy fractured porous media[R]. SPE 69637, 2001.
    [7]HAFTKHANI A R, ARABI M.Improve regreesion-based models for prediction of internal-bond strength of particleboard using Buckingham’s pi-theorem[J]. Journal of Forestry Research. 2013. 24(4):735-740.
    [8]康志宏.缝洞型碳酸盐岩油藏水驱油机理模拟试验研究[J].中国西部油气地质, 2006, 2(1):87-91.[KANG Z H. The experiment study of oil displacement of carbonate vuggy reservoir[J]. China Western Geology, 2006, 2(1):87-91.]
    [9]JOHN Z. Mechanistic modeling of CO2-goam processes in fractured chalk rock:Effect of foam strength and gravity forces on oil recovery[J]. Society of petroleum Engineers. 2011. SPE Enhanced Oil Recovery Conference, 19-21 July, Kuala Lumpur, Malaysia.
    [10]王雷,窦之林,林涛,等.缝洞型油藏注水驱油可视化物理模拟研究[J].西南石油大学学报:自然科学版, 2011, 33(2):121-124.[WANG L, DOU Z L, LIN T, et al. Study on the visual modeling of water flooding in carbonate fracture-cavity reservoir[J]. Journal of Southwest Petroleum University:Science&Technology Edition, 2011, 33(2):121-124.]
    [11]GUO J C, NIE R S, JIA Y L. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs[J]. Journal of Hydrology. 2012. 464-465:281-293.
    [12]ASGARI N Y, TOKHMECHI B, KAMKAR R A, et al. A combined Parzen-wevelet approach for detection of vuggy zones in fractured carbonate reservoirs using petrophysical logs[J]. Journal of Petroleum Science and Engineering. 2014. 119:1-7.
    [13]白玉湖,李家春,周济福.驱油两相流物理模拟相似参数的敏感性分析[J].中国科学:E辑工程科学材料科学, 2005, 35(7):761-772.[BAI Y H, LI J C, ZHOU J F. Sensitivity analysis of similar parameters in physical simulation of two phase flow in water drive[J].Science in China:Series E Engineering&Materials Science, 2005, 35(7), 761-772.]
    [14]侯吉瑞,李海波,姜瑜,等.多井缝洞单元水驱见水模式宏观三维物理模拟[J].石油勘探与开发, 2014, 41(6):717-722.[HOU J R, LI H B, JIANG Y, et al. Macroscopic three-dimensional physical simulation of water flooding in multi-well fracture-cavity unit[J].Petroleum Exploration&Development Online, 2014, 41(6):784-789.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700