多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances in aromatic production from biomass via catalytic fast pyrolysis over hierarchical zeolite
  • 作者:赵锦波 ; 苟鑫 ; 陈皓 ; 傅杰
  • 英文作者:ZHAO Jinbo;GOU Xin;CHEN Hao;FU Jie;Science & Technology,SINOPEC Corp.;Key Laboratory of Biomass Chemical Engineering of the Ministry of Education,College of Chemical and Biological Engineering,Zhejiang University;
  • 关键词:芳烃 ; 生物质 ; 催化热裂解 ; 多级孔分子筛
  • 英文关键词:aromatics;;biomass;;catalytic fast pyrolysis;;hierarchical zeolite
  • 中文刊名:SWJG
  • 英文刊名:Chinese Journal of Bioprocess Engineering
  • 机构:中国石油化工股份有限公司科技部;浙江大学化学工程与生物工程学院生物质化工教育部重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:生物加工过程
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金(21436007);; 浙江省自然科学基金(LR17B060002)
  • 语种:中文;
  • 页:SWJG201904002
  • 页数:13
  • CN:04
  • ISSN:32-1706/Q
  • 分类号:5-17
摘要
芳烃是石化工业的一种重要基础原料,目前主要来源于石油和煤焦油。随着化石能源的日益枯竭、全球环境问题的日益严重和芳烃需求量的不断增长,芳烃的传统生产工艺压力越来越大。生物质催化热解制备芳烃技术由于其绿色、原料来源广以及可持续等优点,近年来备受关注。微孔分子筛因其大比表面积、强酸性、微孔择形性和良好的水热稳定性等优点成为理想的催化热解催化剂,但是微孔分子筛扩散阻力大、易积碳致使催化剂寿命低,使其在生物质催化热解制备芳烃的应用方面受到很大限制。在微孔分子筛中引入介孔得到多级孔分子筛,可以有效解决分子传质问题,并且保留微孔的强酸性以及择形选择,提高催化反应活性的同时提高催化剂的使用寿命,因此,多级孔分子筛成为了近年来生物质催化热解的热点。本文中,笔者详细综述了近年来生物质催化热裂解制备芳烃过程中所需要的原料和反应机制,重点综述了多级孔分子筛的优势以及其在生物质催化热解制备芳烃方面的应用前景和研究进展,最后总结了该技术面临的挑战和发展方向。
        Aromatics are important platform chemicals in the petrochemical industry,and are produced primarily on the catalytic reforming of petroleum resources. With the declining resources of crude oil,increasing global environmental concerns and the growing demand for aromatics,the traditional aromatics production technology is facing severe challenges. In recent years,catalytic fast pyrolysis(CFP) of biomass to produce aromatics attracts great attentions owing to its green and sustainable characteristics. Microporous zeolite is known as the best catalyst in CFP process due to its high surface area,strong acidity,shape-selectivity and superior hydrothermal stability. However,the low mass-transfer rates and high yield of coke during CFP results in the short lifetime of catalysts. The introduction of mesopores in microporous zeolite to form the hierarchical zeolite can not only improve the mass transfer but also keep the strong acidity and shape-selectivity to improve the catalytic activity and decrease coke deposition. We review the biomass feedstock and reaction chemistry in the CFP of biomass,and mainly reviews the advantages of hierarchical zeolite as well as its application and innovation. Finally,the challenges and perspectives of catalytic fast pyrolysis technique are summarized.
引文
[1] 董丽.生物质制芳烃技术进展与发展前景[J].化工进展,2013,32(7):1526-1533.
    [2] ZHANG X,LEI H,ZHU L,et al.From lignocellulosic biomass to renewable cycloalkanes for jet fuels[J].Green Chem,2015,17(10):4736-4747.
    [3] LIU C,WANG H,KARIM A M,et al.Catalytic fast pyrolysis of lignocellulosic biomass[J].Chem Soc Rev,2014,43(22):7594-623.
    [4] CARLSON T R,VISPUTE T P,HUBER G W.Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds[J].ChemSusChem,2008,1(5):397-400.
    [5] SPIVEY J J,EGBEBI A.Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas[J].Chem Soc Rev,2007,36(9):1514-1528.
    [6] ALONSO D M,WETTSTEIN S G,DUMESIC J A.Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J].Chem Soc Rev,2012,41(24):8075-98.
    [7] ZHANG X,LEI H,Chen S,et al.Catalytic co-pyrolysis of lignocellulosic biomass with polymers:a critical review[J].Green Chem,2016,18(15):4145-4169.
    [8] WANG K G,KIM K H,BROWN R C.Catalytic pyrolysis of individual components of lignocellulosic biomass[J].Green Chem,2014,16(2):727-735.
    [9] HU C,XIAO R,Zhang H.Ex-situ catalytic fast pyrolysis of biomass over HZSM-5 in a two-stage fluidized-bed/fixed-bed combination reactor[J].Bioresour Technol,2017,243:1133-1140.
    [10] JAE J,COOLMAN R,MOUNTZIARIS T J,et al.Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal[J].Chem Eng Sci,2014,108:33-46.
    [11] FENG Y,LI G,LI X,et al.Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment[J].Bioresour Technol,2016,214:520-527.
    [12] ZHANG Z,CHENG H,CHEN H,et al.Enhancement in the aromatic yield from the catalytic fast pyrolysis of rice straw over hexadecyl trimethyl ammonium bromide modified hierarchical HZSM-5[J].Bioresour Technol,2018,256:241-246.
    [13] QIAO K,SHI X,ZHOU F,et al.Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J].Appl Catal A,2017,547:274-282.
    [14] LI J,LI X Y,ZHOU G Q,et al.Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J].Appl Catal A,2014,470:115-122.
    [15] WANG K G,ZHANG J,SHANGKS B H,et al.Catalytic conversion of carbohydrate-derived oxygenates over HZSM-5 in a tandem micro-reactor system[J].Green Chem,2015,17(1):557-564.
    [16] HOFF T C,GARDNER D W,THILAKARATNE R,et al.Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis[J].Appl Catal A,2017,529:68-78.
    [17] FOSTER A J,JAE J,CHENG Y T,et al.Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J].Appl Catal A,2012,423:154-161.
    [18] QIAO K,HAN Z,ZHOU F,et al.Synthesis and physicochemical characterization of hierarchical ZSM-5:effect of organosilanes on the catalyst properties and performance in the catalytic fast pyrolysis of biomass[J/OL].[2018-12-12].https://doi.org/10.1016/j.micromeso.2018.07.028.
    [19] WANG S R,DAI G X,YANG H P,et al.Lignocellulosic biomass pyrolysis mechanism:a state-of-the-art review[J].Prog Energy Combust Sci,2017,62:33-86.
    [20] DAHL I M,KOLBOE S.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:I.isotopic labeling studies of the co-reaction of ethene and methanol[J].J Catal,1994,149(2):458-464.
    [21] DAHL I M,KOLBOE S.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:2:isotopic labeling studies of the co-reaction of propene and methanol[J].J Catal,1996,161(1):304-309.
    [22] BJ?RGEN M,AKYALCIN S,OLSBYE U,et al.Methanol to hydrocarbons over large cavity zeolites:toward a unified description of catalyst deactivation and the reaction mechanism[J].J Catal,2010,275(1):170-180.
    [23] ZHANG H,CHENG Y T,VISPUTE T P,et al.Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5:the hydrogen to carbon effective ratio[J].Energy Environ Sci,2011,4(6):2297.
    [24] JAE J,TOMPSETT G A,FOSTER A J,et al.Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J].J Catal,2011,279(2):257-268.
    [25] CARLSON T R,CHENG Y T,JAE J,et al.Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust[J].Energy Environ Sci,2011,4(1):145-161.
    [26] CARLSON T R,TOMPSETT G A,CONNER W C,et al.Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J].Topics Catal,2009,52(3):241-252.
    [27] FANCHIANG W L,LIN Y C.Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J].Appl Catal A,2012,419:102-110.
    [28] CHENG Y T,HUBER G W.Chemistry of furan conversion into aromatics and olefins over HZSM-5:a model biomass conversion reaction[J].ACS Catal,2011,1(6):611-628.
    [29] TAUFIQURRAHMI N,BHATIA S.Catalytic cracking of edible and non-edible oils for the production of biofuels[J].Energy Environ Sci,2011,4(4):1087-1112.
    [30] PRIMO A,GARCIA H.Zeolites as catalysts in oil refining[J].Chem Soc Rev,2014,43(22):7548-7561.
    [31] MENG X,XIAO F S.Green routes for synthesis of zeolites[J].Chem Rev,2014,114(2):1521-1543.
    [32] TAGO T,KONNO H,NAKASAK Y,et al.Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis[J].Catal Surveys Asia,2012,16(3):148-163.
    [33] REDDY J K,MOTOKURA K,KOYAMA T,et al.Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J].J Catal,2012,289:53-61.
    [34] ENNAERT T,VAN AELST J,DIJKMANS J,et al.Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J].Chem Soc Rev,2016,45(3):584-611.
    [35] PEREZ-RAMIREZ J,CHRISTENSEN C H,EGEBLAD K,et al.Hierarchical zeolites:enhanced utilisation of microporous crystals in catalysis by advances in materials design[J].Chem Soc Rev,2008,37(11):2530-2542.
    [36] HARTMANN M.Hierarchical zeolites:a proven strategy to combine shape selectivity with efficient mass transport[J].Angew Chem Int Ed,2004,43(44):5880-5882.
    [37] JIA L Y,RAAD M,HAMIEH S,et al.Catalytic fast pyrolysis of biomass:superior selectivity of hierarchical zeolites to aromatics[J].Green Chem,2017,19(22):5442-5459.
    [38] JACOBSEN C J H,MADSEN C,HOUZVICKA J,et al.Mesoporous zeolite single crystals[J].J Am Chem Soc,2000,122(29):7116-7117.
    [39] SCHMIDT I B A,GUSTAVSSON E.Carbon nanotube templated growth of mesoporous zeolite single crystals[J].Chem Mater,2001,13(12):4416-4418.
    [40] CHEN H,ZHANG X,ZHANG J,et al.Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel-like hydrocarbons[J].RSC Adv,2017,7(73):46109-46117.
    [41] 李文林,郑金玉,罗一斌.多级孔分子筛制备方法、机理和应用研究进展[J].石油学报(石油加工),2016,32(6):1273-1286.
    [42] TAO Y S,KANOH H,KANEKO K.Uniform mesopore-donated zeolite Y using carbon aerogel templating[J].J Phys Chem B,2003,107(40):10974-10976.
    [43] RHODES K H,DAVIS S A,CARUSO F,et al.Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks[J].Chem Mater,2000,12(10):2832-2834.
    [44] NAYDENOV V,TOSHEVA L,STERTE J.Palladium-containing zeolite beta macrostructures prepared by resin macrotemplating[J].Chem Mater,2002,14(12):4881-4885.
    [45] NANDAN D,SAXENA S K,VISWANADHAM N.Synthesis of hierarchical ZSM-5 using glucose as a templating precursor[J].J Mat Chem A,2014,2(4):1054-1059.
    [46] CHEN H,SHI X,ZHOU F,et al.Catalytic fast pyrolysis of cellulose to aromatics over hierarchical nanocrystalline ZSM-5 zeolites prepared using sucrose as a template[J].Catal Commun,2018,110:102-105.
    [47] TAO H X,LI C L,REN J W,et al.Synthesis of mesoporous zeolite single crystals with cheap porogens[J].J Solid State Chem,2011,184(7):1820-1827.
    [48] SERRANO D P,ESCOLA J M,PIZARRO P.Synthesis strategies in the search for hierarchical zeolites[J].Chem Soc Rev,2013,42(9):4004-4035.
    [49] CHEN H,WYDRA J,ZHANG X,et al.Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J].J Am Chem Soc,2011,133(32):12390-12393.
    [50] FANG Y,HU H.An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure[J].J Am Chem Soc,2006,128(33):10636-10637.
    [51] LIU H,YANG S,HU J,et al.A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization[J].Fuel Process Technol,2012,96:195-202.
    [52] NA K,CHOI M,RYOO R.Recent advances in the synthesis of hierarchically nanoporous zeolites[J].Micropor Mesopor Mater,2013,166:3-19.
    [53] CHEN H,SHI X,LIU J,et al.Controlled synthesis of hierarchical ZSM-5 for catalytic fast pyrolysis of cellulose to aromatics[J].J Mater Chem A,2018,6(42):21178-21185.
    [54] ZHANG Z,CHENG H,CHEN H,et al.Catalytic fast pyrolysis of rice straw to aromatics over hierarchical HZSM-5 treated with different organosilanes[J].Energy Fuels,2018,doi:10.1021/acs.energyfuels.8b03213.
    [55] KOEKKOEK A J J,TEMPELMAN C H L,DEGIRMENCI V,et al.Hierarchical zeolites prepared by organosilane templating:a study of the synthesis mechanism and catalytic activity[J].Catal Today,2011,168(1):96-111.
    [56] WANG L F,ZHANG Z,YIN C Y,et al.Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers[J].Micropor Mesopor Mater,2010,131(1/2/3):58-67.
    [57] BAN S,VAN LAAK A N C,LANDERS J,et al.Insight into the effect of dealumination on mordenite using experimentally validated simulations[J].J Phys Chem C,2010,114(5):2056-2065.
    [58] KUMAR S,SINHA A K,HEGDE S G,et al.Influence of mild dealumination on physicochemical,acidic and catalytic properties of H-ZSM-5[J].J Mol Catal A,2000,154(1/2):115-120.
    [59] TAO H X,YANG H,LIU X H,et al.Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures[J].Chem Eng J,2013,225:686-694.
    [60] TRIANTAFYLLIDIS K S,VLESSIDIS A G,NALBANDIAN L,et al.Effect of the degree and type of the dealumination method on the structural,compositional and acidic characteristics of H-ZSM-5 zeolites[J].Micropor Mesopor Mater,2001,47(2/3):369-388.
    [61] AGUDELO J L,HENSEN E M,GIRALDO S A,et al.Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite[J].Fuel Process Technol,2015,133:89-96.
    [62] 王达锐.ZSM-5分子筛孔道和结构多级化的方法及其催化性能研究[D].上海:华东师范大学,2016.
    [63] ZHANG H Y,SHAO S S,LUO M M,et al.The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry[J].Bioresour Technol,2017,244:726-732.
    [64] CHEN H,WANG Q,ZHANG X,et al.Quantitative conversion of triglycerides to hydrocarbons over hierarchical ZSM-5 catalyst[J].Appl Catal B,2015,166-167:327-334.
    [65] CHEN H,WANG Q,ZHANG X,et al.Hydroconversion of Jatropha oil to alternative fuel over hierarchical ZSM-5[J].Ind Eng Chem Res,2014,53(51):19916-19924.
    [66] GROEN J C,JANSEN J C,MOULIJN J A,et al.Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J].J Phys Chem B,2004,108(35):13062-13065.
    [67] DING K,ZHONG Z P,WANG J,et al.Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard[J].J Anal Appl Pyrolysis,2017,125:153-161.
    [68] SERRANO D P,ESCOLA J M,BRIONES L,et al.Hydroprocessing of the LDPE thermal cracking oil into transportation fuels over Pd supported on hierarchical ZSM-5 catalyst[J].Fuel,2017,206:190-198.
    [69] PARK H J,PARK K H,JEON J K,et al.Production of phenolics and aromatics by pyrolysis of miscanthus[J].Fuel,2012,97:379-384.
    [70] PARK H J,HEO H S,JEON J K,et al.Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites[J].Appl Catal B,2010,95(3/4):365-373.
    [71] HERNANDO H,MORENO I,FERMOSO J,et al.Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides[J].Biomass Conv Bioref,2017,7(3):289-304.
    [72] NEUMANN G T,HICKS J C.Novel Hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass[J].ACS Catal,2012,2(4):642-646.
    [73] CHEN H,CHENG H,ZHOU F,et al.Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification[J].J Anal Appl Pyrol,2018,131:76-84.
    [74] LEE H W,KIM Y M,LEE B,et al.Catalytic copyrolysis of torrefied cork oak and high density polyethylene over a mesoporous HY catalyst[J].Catal Today,2018,307:301-307.
    [75] NEUPANE S,ADHIKARI S,WANG Z,et al.Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis[J].Green Chem,2015,17(4):2406-2417.
    [76] ZHENG A Q,JIANG L Q,ZHAO Z L,et al.Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose,lignin,and cellulose[J].Energy Fuels,2015,29(12):8027-8034.
    [77] ZHENG A Q,ZHAO Z L,HUANG Z,et al.Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity[J].Energy Fuels,2014,28(9):5804-5811.
    [78] MAHADEVAN R,ADHIKARI S,SHAKYA R,et al.Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis[J].J Anal Appl Pyrol,2016,122:95-105.
    [79] ZHENG A,ZHAO Z,CHANG S,et al.Effect of torrefaction on structure and fast pyrolysis behavior of corncobs[J].Bioresour Technol,2013,128:370-377.
    [80] MA Z Q,GHOSH A,ASTHANA N,et al.Optimization of the reaction conditions for catalytic fast pyrolysis of pretreated lignin over zeolite for the production of phenol[J].ChemCatChem,2017,9(6):954-961.
    [81] MORGAN H M JR,BU Q,LIANG J,et al.A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals[J].Bioresour Technol,2017,230:112-121.
    [82] ZHANG B,ZHANG J,ZHONG Z P,et al.Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J].J Anal Appl Pyrol,2018,130:233-240.
    [83] LIU S Y,ZHANG Y N,FAN L L,et al.Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J].Fuel,2017,196:261-268.
    [84] ZHANG B,TAN G W,ZHONG Z P,et al.Microwave-assisted catalytic fast pyrolysis of spent edible mushroom substrate for bio-oil production using surface modified zeolite catalyst[J].J Anal Appl Pyrol,2017,123:92-98.
    [85] DAI L L,FAN L L,DUAN D L,et al.Production of hydrocarbon-rich bio-oil from soapstock via fast microwave-assisted catalytic pyrolysis[J].J Anal Appl Pyrol,2017,125:356-362.
    [86] DUAN D,RUAN R,WANG Y,et al.Microwave-assisted acid pretreatment of alkali lignin:effect on characteristics and pyrolysis behavior[J].Bioresour Technol,2018,251:57-62.
    [87] ZHENG A,JIANG L,ZHAO Z,et al.Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production:chemistry,catalyst and process[J].Wiley Interdiscip Rev:Energy Environt,2017,6(3):e234.
    [88] CHENG Y T,HUBER G W.Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5[J].Green Chem,2012,14(11):3114-3125.
    [89] ZHANG H Y,CARLSON T R,XIAO R,et al.Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor[J].Green Chem,2012,14(1):98-110.
    [90] ZHANG X S,LEI H W,CHEN S L,et al.Catalytic co-pyrolysis of lignocellulosic biomass with polymers:a critical review[J].Green Chem,2016,18(15):4145-4169.
    [91] ZHANG B,ZHONG Z P,LI T,et al.Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J].J Anal Appl Pyrol,2018,130:1-7.
    [92] REZAEI P S,OH D,HONG Y,et al.In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts[J].Energy Conv Manag,2017,151:116-122.
    [93] MULLEN C A,DORADO C,BOATENG A A.Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5:catalyst deactivation and coke formation[J].J Anal Appl Pyrol,2018,129:195-203.
    [94] DAI L L,FAN L L,DUAN D L,et al.Microwave-assisted catalytic fast co-pyrolysis of soapstock and waste tire for bio-oil production[J].J Anal Appl Pyrol,2017,125:304-309.
    [95] ZHANG H Y,ZHENG J,XIAO R,et al.Co-catalytic pyrolysis of biomass and waste triglyceride seed oil in a novel fluidized bed reactor to produce olefins and aromatics integrated with self-heating and catalyst regeneration processes[J].RSC Adv,2013,3(17):5769-5774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700