颗粒粒度对颗粒床有效热物性影响的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation of the Effect of Particle Size on the Effective Thermal Properties of Particle Beds
  • 作者:巩保平 ; 冯勇进 ; 余果 ; 廖洪彬 ; 王晓宇 ; 冯开明
  • 英文作者:GONG Bao-Ping;FENG Yong-Jin;YU Guo;LIAO Hong-Bin;WANG Xiao-Yu;FENG Kai-Ming;Southwest institute of physics;
  • 关键词:颗粒床 ; 颗粒粒度 ; 颗粒级配 ; 有效热导率 ; 瞬态平面热源法
  • 英文关键词:binary-sized particle bed;;particle size;;particle composition;;effective thermal conductivity;;transient plane source method
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:核工业西南物理研究院;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家磁约束核聚变能发展研究专项(No.2014GB111001,No.2014GB112003,No.2017YFE0300602)
  • 语种:中文;
  • 页:GCRB201905027
  • 页数:9
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:193-201
摘要
颗粒床在涉及能量传递的系统中具有广泛的应用,其有效热物性是表征球床传热性能的重要参数.利用瞬态平面热源法测量一元和二元颗粒床的热物性,并分析颗粒粒度和颗粒级配对颗粒床有效热导率、热扩散系数和等效体积比热的影响。结果表明同种材料的一元颗粒床其有效热导率和热扩散系数随着颗粒粒度的增大在逐渐增加;二元颗粒床的有效热导率和热扩散系数随大颗粒体积分数的增加先增答后减小;随着颗粒粒度和颗粒级配的变化颗粒床的等效体积比热没有显著变化。本文结果对颗粒床的热物性研究和对颗粒床的工业应用具有一定的参考价值。
        Particle beds occur in a wide range of heat transfer systems in chemical industry and in energy field. The effective thermal properties are important parameters to characterize the heat transfer performance of particle beds. The effective thermal properties of mono-sized and binary-sized particle beds were measured by Transient Plane Source Method(TPS) in this work. And the effects of particle size and particle size distribution on the effective thermal conductivity, thermal diffusivity and specific heat of the particle bed were analyzed. The results show that, for the same material, the effective thermal conductivity and the thermal diffusivity increase with the increase of particle size in mono-sized particle beds. For binary-sized particle beds, the effective thermal conductivity and thermal diffusivity of binary-sized particle beds increase first and then decrease with the increase of volume fraction of large particle. The specific heat of the particle bed did not changed significantly with the change of the particle size in mono-sized particle beds and the volume fraction of large particle in binary-sized particle beds. The results, obtained in this work, provide some reference value for researching the thermal properties of particle beds and industrial applications of the particle beds.
引文
[1] Antwerpen W V, Toit C G D, Rousseau P G. A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-sized Spherical Particles[J]. Nuclear Engineering and Design,2010, 240:1803-1818
    [2] FENG Kaiming, WANG Xiaoyu, FENG Yongjin, et al.Current Progress of Chinese HCCB TBM Program[J].Fusion Engineering and Design, 2016, 109-111:729-735
    [3]巩保平,冯勇进,刘洋,等.HCCB-TBM包层Li_4SiO_4球床堆积结构的数值模拟[J].核聚变与等离子体物理,2017,37(2):173-180Gong Baoping, Feng Yongjin, Liu Yang, et al. Numerical Modeling Packing Structures of Li_4SiO_4 Pebble Bed for HCCB-TBM[J]. Nuclear Fusion and Plasma Physics,2017, 37(2):173-180
    [4] Abou-Sena A, Ying A, Abdou M. Experimental Measurements of the Effective Thermal Conductivity of a Lithium Titanate(Li_2TiO_3)Pebbles-packed Bed[J]. Journal of Materials Processing Technology, 2007, 181:206-212
    [5] FENG Yongjin, FENG Kaiming, LIU Yang, et al. Experimental Investigation of Thermal Properties of the Li_4SiO_4Pebble Beds[J]. Journal of Plasma and Fusion Research SERIES, 2015, 11:49-52
    [6] Pupeschi S, Knitter R, Kamlah M. Effective Thermal Conductivity of Advanced Ceramic Breeder Pebble Beds[J].Fusion Engineering and Design, 2017, 116:73-80
    [7] Donne M D, Goraieb A, Piazza G, et al. Measurements of the Effective Thermal Conductivity of a Li_4SiO_4 Pebble Bed[J]. Fusion Engineering and Design, 2000, 49-50:513-519
    [8] Tanigawa H, Hatano T, Enoeda M, et al. Effective Thermal Conductivity of a Compressed Li_2TiO_3 Pebble Bed[J]. Fusion Engineering and Design, 2005, 75-79:801-805
    [9] Weidenfeld G, Weiss Y, Kalman H. A Theoretical Model for Effective Thermal Conductivity(ETC)of Particulate Beds Under Compression[J]. Granular Matter, 2004, 6:121-129
    [10] Reimann J, Hermsmeyer S. Thermal Conductivity of Compressed Ceramic Breeder Pebble Beds[J]. Fusion Engineering and Design, 2002(61/62):345-351
    [11] Reimann J, Piazza G, Harsch H. Thermal Conductivity of Compressed Beryllium Pebble Beds[J]. Fusion Engineering and Design, 2006, 81:449-454
    [12] Dai W, Pupeschi S, Hanaor D, et al. Influence of Gas Pressure on the Effective Thermal Conductivity of Ceramic Breeder Pebble Beds[J]. Fusion Engineering and Design, 2017, 118:45-51
    [13] Slavin A J, Arcas V, Greenhalgh C A, et al. Theoretical Model for the Thermal Conductivity of a Packed Bed of Solid Spheroids in the Presence of a Static Gas, with No Adjustable Parameters Except at Low Pressure and Temperature[J]. International Journal of Heat and Mass Transfer, 2002, 45:4151-4161
    [14] Mandal D, Gupta S. Effective Thermal Conductivity of Unary Particulate Bed[J]. The Canadian Journal of Chemical Engineering, 2016, 94:1918-1923
    [15] Markov A, Levin V, Markov M. Effective Thermal Conductivity of Gas-solid Mixtures:Effect of the Size of Inclusions[J]. International Journal of Heat and Mass Transfer,2016, 98:108-113
    [16]胥义,王丽萍,钟彦骞,等.低流量下微细颗粒固定床的温度分布及有效传热参数研究[J].高校化学工程学报,2011,25(5):769-774XU Yi, WANG Liping, ZHONG Yanqian, et al. Experimental Research on Temperature Distributions and Effective Thermal Parameters of Micro-Particle Packed Bed with Low Velocity Fluid[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5):769-774
    [17] CHEN Lei, CHEN Youhua, HUANG Kai, et al. Effective Thermal Property Estimation of Unitary Pebble Beds Based on a CFD-DEM Coupled Method for a Fusion Blanket[J]. Plasma Science and Technology, 2015,17(12):1083-1087
    [18] CHEN Lei, CHEN Youhua, HUANG Kai, et al. Investigation of Effective Thermal Conductivity for Pebble Beds by one-way Coupled CFD-DEM Method for CFETR WCCB[J]. Fusion Engineering and Design, 2016, 106:1-8
    [19] Mandal D, Sathiyamoorthy D, Vinjamur M. Void Fraction and Effective Thermal Conductivity of Binary Particulate Bed[J]. Fusion Engineering and Design, 2013, 88:216-225
    [20] ZHAO Zhou, FENG Kaiming, FENG Yongjin. Theoretical Calculation and Analysis Modeling for the Effective Thermal Conductivity of Li4SiO_4 Pebble Bed[J]. Fusion Engineering and Design, 2010, 85:1975-1980
    [21] CHEN Lei, MA Xuebin, CHENG Xiaoman, et al. Theoretical Modeling of the Effective Thermal Conductivity of the Binary Pebble Beds for the CFETR-WCCB Blanket[J]. Fusion Engineering and Design, 2015, 101:148-153
    [22] Yun T S, Evans T M. Three-dimensional Random Network Model for Thermal Conductivity in Particulate Materials[J]. Computers and Geotechnics, 2010, 37:991-998
    [23] Thiele A M, Kumar A, Sant G, et al. Effective Thermal Conductivity of Three-component Composites Containing Spherical Capsules[J]. International Journal of Heat and Mass Transfer, 2014, 73:177-185
    [24] Panchal M, Chaudhuri P, Lew J T V, et al. Numerical Modelling for the Effective Thermal Conductivity of Lithium Meta Titanate Pebble Bed with Different Packing Structures[J]. Fusion Engineering and Design, 2016,112:303-310
    [25] Gustafsson S E. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measure-ments of Solid Material[J]. Review of Scientific Instruments, 1991, 62(3):797-804
    [26]胡芃,陈则韶.量热技术和热物性测定[M].合肥:中国科学技术大学出版社,2009:126-128HU Peng, CHEN Zeshao. Calorimetry and Thermophysical Properties Measurement[M]. Hefei:Press of University of Science and Technology of China, 2009:126-128
    [27] Gustafsson S E, Karawacki E, Chohan M A. Thermal Transport Studies of Electrical Conducting Materials Using the Transient Hot-trip Technique[J]. Journal of Physics D:Applied Physics, 1986, 19:727-735
    [28] Bohac V, Gustavsson M K, Kubicar L, et al. Parameter Estimations for Measurements of Thermal Transport Properties with the Hot Disk Thermal Constants Analyzer[J]. Review of Scientific Instruments, 2000, 71(6):2452-2455
    [29]赵秀峰,曹景洋,罗惠芬.采用Hot Disk测量岩土热物性的实验研究[J].中国测试,2012, 38(4):106-109ZHAO Xiufeng, CAO Jingyang, LUO Huifen, Experimental Study on Measuring Thermal Properties of Rock and Soil with Hot Disk[J]. China Measurement&Test, 2012,38(4):106-109
    [30]于明志,陈汉翠,胡爱娟,等.水分含量对颗粒型含湿多孔介质导热系数的影响及机理[J].工程热物理学报,2013,34(10):1910-1913YU Mingzhi, CHEN Hancui, HU Aijuan, et al. The Influence Mechanism of Moisture Content on Thermal Conductivity of Unsaturated Wet Porous Medium[J]. Journal of Engineering Thermophysics, 2013, 34(10):1910-1913
    [31]于明志,隋晓凤,彭晓峰.堆积型含湿多孔介质导热系数测试实验研究[J].山东建筑大学学报,2008, 23(5):385-388YU Mingzhi, SUI Xiaofeng, PENG Xiaofeng. Experimental Study on Thermal Conductivity Measurement of Wet Unconsolidated Porous Media[J]. Journal of Shandong Jianzhu University, 2008, 23(5):385-388
    [32] CHEN Hongli, WANG Shuang, JIN Cheng, et al. Theoretical and Experimental Study on Effective Thermal Conductivity of Pebble Bed for Fusion Blanket[J]. Fusion Engineering and Design, 2017, 124:792-796
    [33] Gan Y, Kamlah M, Reimann J. Computer Simulation of Packing Structure in Pebble Beds[J]. Fusion Engineering and Design, 2010, 85:1782-1787
    [34] Kyrylyuk A V, Wouterse A, Philipse A P. Percolation and Jamming in Random Heterogenous Materials with Competing Length Scales[J]. Progress in Colloid and Polymer Science, 2010, 137:29-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700