铝合金内芯装配式屈曲约束支撑有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite Element Analysis of Aluminum Alloy Core Assembled Bucking-restrained Braces
  • 作者:李帼昌 ; 张洪恩 ; 杨志坚 ; 石先硕
  • 英文作者:LI Guo-chang;ZHANG Hong-en;YANG Zhi-jian;SHI Xian-shuo;School of Civil Engineering, Shenyang Jianzhu University;
  • 关键词:有限元分析 ; 铝合金内芯装配式屈曲约束支撑 ; 集中耗能因子 ; 宽厚比 ; 螺栓间距 ; 间隙
  • 英文关键词:finite element analysis;;aluminum alloy core assembled buckling-restrained brace;;yield length ratio;;width-thickness ratio;;bolt spacing;;gap
  • 中文刊名:XBJG
  • 英文刊名:Journal of Architecture and Civil Engineering
  • 机构:沈阳建筑大学土木工程学院;
  • 出版日期:2019-03-15
  • 出版单位:建筑科学与工程学报
  • 年:2019
  • 期:v.36;No.137
  • 基金:国家自然科学基金项目(51178276);; 辽宁省重点研发计划指导计划项目(jytcy201801)
  • 语种:中文;
  • 页:XBJG201902008
  • 页数:8
  • CN:02
  • ISSN:61-1442/TU
  • 分类号:60-67
摘要
提出了一种铝合金内芯装配式屈曲约束支撑(ALB),并以A5083铝合金为支撑耗能内芯设计了4组19个支撑构件,采用ABAQUS软件对其进行有限元分析,研究了集中耗能因子Y_(LR)、宽厚比、螺栓间距、核心板与约束板间间隙对支撑性能的影响。结果表明:当Y_(LR)<0.75时,支撑耗能性能会随着Y_(LR)的增加而提高,当Y_(LR)>0.75时,支撑耗能性能随着Y_(LR)的增加开始降低,当Y_(LR)=0.75时,支撑整体表现最佳;支撑耗能性能会随着宽厚比的增加而降低,宽厚比不超过10时,支撑可以获得更好的耗能能力;螺栓间距不宜过大,通过控制螺栓间距L_b与支撑核心板屈曲波长L_w的比值L_b/L_w来控制螺栓间距,当L_b/L_w≤1.5时,支撑约束单元受力更加合理,可以为核心单元提供足够的约束力;核心板与约束单元之间的间隙过小时无法为核心板变形留有足够空间,间隙过大时支撑承载力会有较大降低且不稳定,间隙控制在0.5~2 mm时支撑承载能力表现更佳。
        An aluminum alloy inner core assembled buckling-restrained braces(ALB) was proposed, and four groups and nineteen kinds of ALB by using A5083 aluminum alloy as the inner core of energy dissipation were designed, and the finite element analysis was carried out by ABAQUS software. The influences of yield length ratio Y_(LR), width-thickness ratio, bolt spacing, gap between core plate and restraint plate on ALB performance were studied. The results show that when Y_(LR)<0.75, the energy dissipation performance of the buckling-restrained brace(BRB) increases with the increase of Y_(LR), when Y_(LR)>0.75, the energy dissipation performance of the BRB begins to decrease as the Y_(LR) increases, when Y_(LR)=0.75, the overall performance of the BRB is the best. The energy dissipation performance of the BRB decreases with the increase of the width-thickness ratio, when the width-thickness ratio is no more than 10, the BRB can get better energy dissipation capability. The bolt spacing should not be too large. The bolt spacing is controlled by controlling the ratio of the bolt spacing L_b to the buckling wavelength L_w of the BRB core plate. When the L_b/L_w is not more than 1.5, the force of the constraint unit is more reasonable and can provide sufficient binding force for the core unit. The gap between the core plate and the constraint unit is too small to leave enough space for the deformation of the core plate. When the gap is too large, the bearing capacity will be greatly reduced and unstable. When the gap is controlled in 0.5-2 mm, the supporting capacity performance is better.
引文
[1] 王永贵.屈曲约束支撑及支撑框架结构抗震性能与设计方法研究[D].北京:中国矿业大学(北京),2014. WANG Yong-gui.Research on Seismic Performance and Design Method of Buckling-restrained Brace and Brace-frame Structure[D].Beijing:China University of Mining & Technology(Beijing),2014.
    [2] 姜文伟,赵雪莲,包联进,等.世博博物馆主体结构设计[J].建筑钢结构进展,2017,19(5):22-29,90. JIANG Wen-wei,ZHAO Xue-lian,BAO Lian-jin,et al.Design of Main Structure in Expo Museum[J].Progress in Steel Building Structures,2017,19(5):22-29,90.
    [3] 卢清刚,周祥茵,刘永豪,等.中关村国防科技园 A 栋综合楼超限结构设计[J].建筑结构,2017,47(13):63-68. LU Qing-gang,ZHOU Xiang-yin,LIU Yong-hao,et al.Out-of-code Structural Design of Complex Building A of National Defense Science and Technology Park in Zhongguancun[J].Building Structure,2017,47(13):63-68.
    [4] 徐自然,苏骏,崔家春,等.上海浦东国际机场三期扩建工程卫星厅消能减震项目抗震性能化分析[J].建筑结构,2017,47(12):23-28. XU Zi-ran,SU Jun,CUI Jia-chun,et al.Seismic Performance Analysis on Energy Dissipation Satellite Hall of Shanghai Pudong International Airport Three Phase Expansion Project[J].Building Structure,2017,47(12):23-28.
    [5] 李国强,孙飞飞,陈素文,等.大吨位国产TJⅡ型屈曲约束支撑的研制与试验研究[J].建筑钢结构进展,2009,11(4):22-26. LI Guo-qiang,SUN Fei-fei,CHEN Su-wen,et al.Development and Experimental Study of Large-tonnage Domestic TJⅡ Buckling-restrained Brace[J].Progress in Steel Building Structures,2009,11(4):22-26.
    [6] TSAI K C,WU A C,WEI C Y,et al.Welded End-slot Connection and Debonding Layers for Buckling-restrained Braces[J].Earthquake Engineering & Structural Dynamics,2014,43(12):1785-1807.
    [7] 马宁.全钢防屈曲支撑及其钢框架结构抗震性能与设计方法[D].哈尔滨:哈尔滨工业大学,2010. MA Ning.Seismic Behavior and Design Method of All-steel Buckling Restrained Braces and Steel Frames[D].Harbin:Harbin Institute of Technology,2010.
    [8] USAMI T,GE H B,KASAI A.Overall Buckling Prevention Condition of Buckling-restrained Braces as a Structural Control Damper[C]//WCEE.Proceedings of the 14th World Conference on Earthquake Engineering.Beijing:WCEE,2008:1-9.
    [9] 贾斌,张其林,罗晓群,等.新型铝合金耗能支撑屈曲约束条件研究[J].地震工程学报,2014,36(3):495-503. JIA Bin,ZHANG Qi-lin,LUO Xiao-qun,et al.Buckling Restraint Conditions for Innovative Aluminum Alloy Energy Dissipation Braces[J].China Earthquake Engineering Journal,2014,36(3):495-503.
    [10] 王国军,王祝堂.铝合金在中国民用航空器上的应用[J].轻合金加工技术,2017,45(11):1-11. WANG Guo-jun,WANG Zhu-tang.Application of Aluminum Alloy on China's Civil Aircraft[J].Light Alloy Fabrication Technology,2017,45(11):1-11.
    [11] 李龙,吕金明,严安,等.铝合金装甲材料的应用及发展[J].兵器材料科学与工程,2017,40(6):105-113. LI Long,LU Jin-ming,YAN An,et al.Application and Development of Aluminum Alloy Armor Materials[J].Ordnance Material Science and Engineering,2017,40(6):105-113.
    [12] DE MATTEIS G,BRANDO G,MAZZOLANI F M.Pure Aluminium:An Innovative Material for Structural Applications in Seismic Engineering[J].Construction and Building Materials,2012,26(1):677-686.
    [13] USAMI T,WANG C L,FUNAYAMA J.Developing High-performance Aluminum Alloy Buckling-restrained Braces Based on Series of Low-cycle Fatigue Tests[J].Earthquake Engineering & Structural Dynamics,2012,41(4):643-661.
    [14] WANG C L,USAMI T,FUNAYAMA J,et al.Low-cycle Fatigue Testing of Extruded Aluminium Alloy Buckling-restrained Braces[J].Engineering Structures,2013,46:294-301.
    [15] DUSICKA P,TINKER J.Global Restraint in Ultra-lightweight Buckling-restrained Braces[J].Journal of Composites for Construction,2013,17(1):139-150.
    [16] 贾斌,张其林,罗晓群,等.铝合金芯板防屈曲耗能支撑滞回性能研究[J].建筑结构学报,2015,36(8):49-57. JIA Bin,ZHANG Qi-lin,LUO Xiao-qun,et al.Study on Hysteretic Behavior of Aluminium Alloy Energy Dissipation Braces[J].Journal of Building Structures,2015,36(8):49-57.
    [17] 贾斌,张其林,赖伟,等.循环荷载作用下铝合金耗能支撑本构关系[J].上海交通大学学报,2016,50(11):1742-1747. JIA Bin,ZHANG Qi-lin,LAI Wei,et al.Constitutive Relation of Aluminium Alloy Energy Dissipation Braces at Cyclic Loading[J].Journal of Shanghai Jiaotong University,2016,50(11):1742-1747.
    [18] ANSI/AISC 341-10,Seismic Provisions for Structural Steel Buildings[S].
    [19] 周云.防屈曲耗能支撑结构设计与应用[M].北京: 中国建筑工业出版社,2007 ZHOU Yun.Design and Application of Buckling-restrained Braced Structures[M].Beijing:China Architecture & Building Press,2007.
    [20] JGJ 82—2011,钢结构高强度螺栓连接技术规程[S]. JGJ 82—2011,Technical Specification for High Strength Bolt Connections of Steel Structures[S].
    [21] 陈绍蕃.论高强度螺栓连接的分类和抗拉连接的计算[J].建筑钢结构进展,2014,16(3):1-6. CHEN Shao-fan.On the Classification of High-strength Bolt Connections and the Calculation of Connections Subjected to Tension[J].Progress in Steel Building Structures,2014,16(3):1-6.
    [22] KOETAKA Y,BYAKUNO Y,INOUE K.Experimental Verification of Design Criteria of Knee Brace Damper[C]//ISSS.Proceedings of the 4th International Symposium on Steel Structures.Seoul:ISSS,2006:125-136.
    [23] CHOU C C,CHEN S Y.Subassemblage Tests and Finite Element Analyses of Sandwiched Buckling-restrained Braces[J].Engineering Structures,2010,32(8):2108-2121.
    [24] 唐荣.新型全钢防屈曲耗能支撑的性能试验与设计方法研究[D].广州:广州大学,2012. TANG Rong.Performance Testing and Designing Method Study of All-metallic Buckling-restrained Brace[D].Guangzhou:Guangzhou University,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700