利用远震接收函数探测四川盆地及周边地区的地壳结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crustal structure beneath the Sichuan basin and adjacent regions revealed by teleseismic receiver functions
  • 作者:李建有 ; 石宝文 ; 徐晓雅 ; 胡家富
  • 英文作者:LI JianYou;SHI BaoWen;XU XiaoYa;HU JiaFu;Department of Geophysics,YunnanUniversity;Kunming Southern Geophysical Technology Development Inc.;
  • 关键词:四川地区 ; P波接收函数 ; 两步反演技术 ; S波速度 ; 下地壳流
  • 英文关键词:Sichuan region;;P receiver functions;;two-step inversion technique;;S-wave velocity;;lower crust flow
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:云南大学地球物理系;昆明南方地球物理技术开发有限公司;
  • 出版日期:2018-07-12
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:国家自然科学基金项目(41374106,41774110)资助
  • 语种:中文;
  • 页:DQWX201807007
  • 页数:17
  • CN:07
  • ISSN:11-2074/P
  • 分类号:85-101
摘要
青藏高原东南缘的龙门山断裂两侧具有陡峭的地形特征,在约50~100km的水平距离内,地形高程从2000m增加到4000m,该区强烈的壳幔变形特征及地球动力学模式一直是研究的热点问题.本文从四川地区49个固定台站记录的远震资料提取了P波接收函数,获得了四川盆地及周边的地壳厚度和泊松比,并以此构建反演的初始模型.在线性反演的基础上,引入了分别拟合低频和高频接收函数的两步反演技术,用以反演台站下方的地壳S波速度结构.数字试验表明,该方法可以有效抑制接收函数反演的不唯一性,为了得到最优解,最后用Bootstrap重采样技术估计解的不确定性.结果表明,四川盆地的地壳厚度在40~46km,松潘—甘孜块体北部的地壳厚度为46~52km,而南部增厚到50~60km.从四川盆地向西跨过龙门山断裂,地壳厚度增加了10~15km.在四川盆地及周边地区,地壳泊松比在0.26~0.32之间,呈块体分布特征,高泊松比(0.28~0.32)主要沿龙门山断裂以及安宁河—小江断裂分布.地壳S波速度结构表明,来自青藏高原中部的中下地壳低速层可能受到了坚硬的四川盆地阻挡,改变原来的运动方向并沿龙门山断裂展布,由于低速层的囤积导致该区地形陡峭和下地壳增厚.
        The India-Eurasia collision over the past 50~65 million years is undoubtedly the most spectacular and youngest tectonic event on Earth,which made the Tibetan plateau uplift by>4 km and its crust thickened to twice normal thickness(~70 km).Field observations and satellite geodesy indicate that the uplift of the Tibetan plateau has been accompanied of a small crustal shortening from the center to the southeastern margin since about 4 million years ago.The Sichuan region located at the eastern margin of Tibet is characterized by steep topographic relief,where the elevation increases from 1000 mto 4000 mover only 50~100 km distances across the Longmenshanfault.The mechanism of intense deformation in the crust and upper mantle and the dynamic model of this region remain one of debate issues.The lower-crust flow model is one of several competing models to interpret the growth and expansion of the southeastern Tibetan plateau,in which the strength of the lower crust is several orders of magnitude less than that of the upper crust,so that the mass of lower crust is flowing from central Tibet to Yunnan.The model seems to be feasible and is generally accepted by many geoscientists because it provides a satisfactory explanation for the topography variations and the lack of substantial shortening of the upper crust in the eastern margin of the Tibet plateau.Nonetheless,this model,despite its potential for a reasonable explanation of the regional geodynamics,is still the subject of lively debate due to the lack of conclusive evidence.In this study,we used teleseismic data recorded by 49 permanent broadband stations deployed in the Sichuan region to obtain the P receiver functions and determined the crustal thickness and Poisson′s ratio,permit to build an initial model for inversion.Based on the linearized inversion algorithm,we introduced a two-step inversion technique,in which the S-velocity structure beneath stations is obtained by fitting the low-frequency and high-frequency receiver functions,respectively.Synthetic experiments indicate that this technique can effectively reduce the dependence of inversion on initial models.In order to obtain optimal solutions,the Bootstrap resamping technique is applied to estimate the uncertainty in solutions.Our results show that the crustal thickness beneath the Sichuan basin is 40~46 km,increasing from 46~52 km beneath the northern Songpan-Garzêfold to 50~60 km beneath the southern Songpang-Garzêfold.In general,the crustal thickness increases by 10~15 km from the Sichuan basin westward across the Longmenshan fault.In the Sichuan basin and adjacent regions,the crustal Poisson′s ratio is 0.25~0.32,exhibiting a regional distribution.For example,the high Poisson′s ratio(0.28~0.30)appears along the Longmenshan fault and the Anninghe-Xiaojiang fault,respectively.The S-velocity structure shows a low-velocity zone in mid/low crust from the central Tibet that may be resisted by the rigid Sichuan basin,so that it redirects to extend along the Longmenshan fault,and results in the steep topography and the thickening of lower crust beneath the fault due to the accumulation of low-velocity zone.
引文
Ammon C J,Randall G E,Zandt G.1990.On the nonuniqueness of receiver function inversions.Journal of Geophysical Research:Solid Earth,95(B10):15303-15318.
    Bai D H,Unsworth M J,Meju M A,et al.2010.Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging.Nature Geoscience,3(5):358-362.
    Berteussen K A.1977.Moho depth determinations based on spectral ratio analysis of NORSAR long-period P-waves.Physics of the Earth and Planetary Interiors,15(1):13-27.
    Burchfiel B C,Chen Z L,Liu Y P,et al.1995.Tectonics of the Longmen Shan and adjacent regions,central China.International Geology Review,37(8):661-735.
    Cassidy J F.1992.Numerical experiments in broadband receiver function analysis.Bulletin of the Seismological Society of America,82(3):1453-1474.
    Clark M K,Royden L H.2000.Topographic ooze:Building the eastern margin of Tibet by lower crustal flow.Geology,28(8):703-706.
    Clark M K,Bush J W M,Royden L H.2005.Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan plateau.Geophysical Journal International,162(2):575-590.
    Copley A,McKenzie D.2007.Models of crustal flow in the IndiaAsia collision zone.Geophysical Journal International,169(2):683-698.
    Efron B,Tibshirani R.1991.Statistical data analysis in the computer age.Science,253(5018):390-395.
    Gan W J,Zhang P Z,Shen Z K,et al.2007.Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.Journal of Geophysical Research:Solid Earth,112(B8):B08416,doi:10.1029/2005JB004120.
    Guo X,Chen Y,Li S D,et al.2017.Crustal shear-wave velocity structure and its geodynamic implications beneath the Emeishan large igneous province.Chinese Journal of Geophysics(in Chinese),60(9):3338-3351,doi:10.6038/cjg20170906.
    Hu J F,Yang H Y,Li G Q,et al.2015.A review on the analysis of the crustal and upper mantle structure using receiver functions.Journal of Asian Earth Sciences,111:589-603.
    JuliàJ,Ammon C J,Herrmann R B,et al.2000.Joint inversion of receiver function and surface wave dispersion observations.Geophysical Journal International,143(1):99-112.
    Kan R J,Zhang S C,Yan F T,et al.1977.Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China.Acta Geophysica Sinica(in Chinese),20(2):96-109.
    Kind R,Yuan X H,Kumar P.2012.Seismic receiver functions and the lithosphere-asthenosphere boundary.Tectonophysics,536-537:25-43.
    Klemperer S L.2006.Crustal flow in Tibet:A review of geophysical evidence for the physical state of Tibetan lithosphere,and inferred patterns of active flow.Geological Society,London,Special Publications,268(1):39-70.
    Langston C A.1977.Corvallis,Oregon,crustal and upper mantle receiver structure from teleseismic P and S waves.Bulletin of the Seismological Society of America,67(3):713-724.
    Langston C A.1979.Structure under Mount Rainer,Washington,inferred from teleseismic body waves.Journal of Geophysical Research,84(B9):4749-4762.
    Li H Y,Su W,Wang C Y,et al.2009.Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet.Earth and Planetary Science Letters,282(1-4):201-211.
    Li Y,Yao H J,Liu Q Y,et al.2010.Phase velocity array tomography of Rayleigh waves in western Sichuan from ambient seismic noise.Chinese Journal of Geophysics(in Chinese),53(4):842-852.
    Ligorría J P,Ammon C J.1999.Iterative deconvolution and receiver function estimation.Bull.seism.Soc.Am.,89:1395-1400.
    Liu Q,Van Der Hilst R,Li Y,et al.2014.Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults.Nature Geoscience,7(5):361-365.
    Lou H,Wang C Y,Lu Z Y,et al.2009.Deep tectonic setting of the 2008 Wenchuan MS8.0earthquake in southwestern Chinajoint analysis of teleseismic P-wave receiver functions and Bouguer gravity anomalies.Science in China Series D:Earth Sciences,52(2):166-179.
    Molnar P,Tapponnier P.1975.Cenozoic tectonics of Asia:effects of a continental collision.Science,189(4201):419-426.
    Owens T J,Zandt G.1997.Implications of crustal property variations for models of Tibetan Plateau evolution.Nature,387(6628):37-43.
    Royden L H,Burchfiel B C,King R W,et al.1997.Surface deformation and lower crustal flow in Eastern Tibet.Science,276(5313):788-790.
    Sambridge M,Drijkoningen G.1992.Genetic algorithms in seismic waveform inversion.Geophysical Journal International,109(2):323-342.
    Schoenbohm L M,Burchfiel B C,Chen L Z.2006.Propagation of surface uplift,lower crustal flow,and Cenozoic tectonics of the southeast margin of the Tibetan Plateau.Geology,34(10):813-816.
    Tapponnier P,Peltzer G,Le Dain A Y,et al.1982.Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine.Geology,10(12):611-616.
    Tapponnier P,Xu Z Q,Roger F,et al.2001.Oblique stepwise rise and growth of the Tibet Plateau.Science,294(5547):1671-1677.
    Vinnik L P.1977.Detection of waves converted from P to SV in the mantle.Physics of the Earth and Planetary Interiors,15(1):39-45.
    Wang C Y,Chan W W,Mooney W D.2003.Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications.Journal of Geophysical Research:Solid Earth,108(B9):2442,doi:10.1029/2002JB001973.
    Wang C Y,Wu J P,Lou H,et al.2003a.P-wave crustal velocity structure in Western Sichuan and Eastern Tibetan region.Science in China Series D:Earth Sciences,46(S1):254-265.
    Wang C Y,Han W B,Wu J P,et al.2003b.Crustal structure beneath the Songpan-GarzêOrogenic belt.Acta Seismologica Sinica(in Chinese),25(3):229-241.
    Wang C Y,Han W B,Wu J P,et al.2007.Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications.Journal of Geophysical Research:Solid Earth,112(B7):B07307,doi:10.1029/2005JB003873.
    Wang C Y,Lou H,Silver P G,et al.2010.Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications.Earth and Planetary Science Letters,289(3-4):367-376.
    Wang C Y,Lou H,Yao Z X,et al.2010.Crustal thicknesses and Poisson′s ratios in Longmenshan mountains and adjacent regions.Quaternary Science(in Chinese),30(4):652-661.
    Wang E C,Burchfiel B C.2000.Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan,China,and its role in formation of the southeastern part of the Tibetan Plateau.Geological Society of America Bulletin,112(3):413-423.
    Wang W L,Wu J P,Fang L H,et al.2014.S wave velocity structure in southwest China from surface wave tomography and receiver functions.Journal of Geophysical Research:Solid Earth,119(2):1061-1078.
    Wu Q J,Tian X B,Zhang N L,et al.2003.Inversion of receiver function by wavelet transformation.Acta Seismologica Sinica(in Chinese),25(6):601-607.
    Xu L L,Rondenay S,Van Der Hilst R D.2007.Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions.Physics of the Earth and Planetary Interiors,165(3-4):176-193.
    Yang Y J,Ritzwoller M H,Zheng Y,et al.2012.A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet.Journal of Geophysical Research:Solid Earth,117(4):B04303,doi:10.1029/2011JB008810.
    Yao H J,Beghein C,Van Der Hilst R D.2008.Surface wave array tomography in SE Tibet from ambient seismic noise and twostation analysis-Ⅱ.Crustal and upper-mantle structure.Geophysical Journal International,173(1):205-219.
    Yao H J,Van Der Hilst R D,Montagner J P.2010.Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography.Journal of Geophysical Research,115(B12):B12307,doi:10.1029/2009JB007142.
    Yin A,Harrison T M.2000.Geologic evolution of the HimalayanTibetan orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.
    Zandt G,Ammon C J.1995.Continental crust composition constrained by measurements of crustal Poisson′s ratio.Nature,374(6518):152-154.
    Zhang P Z,Shen Z K,Wang M,et al.2004.Continuous deformation of the Tibetan Plateau from Global Positioning System data.Geology,32(9):809-812.
    Zhang P Z.2013.A review on active tectonics and deep crustal processes of the Western Sichuan region,eastern margin of the Tibetan Plateau.Tectonophysics,584:7-22.
    Zhang Z J,Wang Y H,Chen Y,et al.2009.Crustal structure across Longmenshan fault belt from passive source seismic profiling.Geophysical Research Letters,36(17):L17310,doi:10.1029/2009GL039580.
    Zhu J S,Wang X B,Yang Y H,et al.2017.The crustal flow beneath the eastern margin of the Tibetan Plateau and its process of dynamics.Chinese Journal of Geophysics(in Chinese),60(6):2038-2057,doi:10.6038/cjg20170602.
    Zhu L P,Kanamori H.2000.Moho depth variation in southern California from teleseismic receiver functions.Journal of Geophysical Research:Solid Earth,105(B2):2969-2980.
    郭希,陈赟,李士东等.2017.峨眉山大火成岩省地壳横波速度结构特征及其动力学意义.地球物理学报,60(9):3338-3351,doi:10.6038/cjg20170906.
    阚荣举,张四昌,晏枫桐等.1977.我国西南地区现代构造应力场与现代构造活动特征的探讨.地球物理学报,20(2):96-109.
    李昱,姚华建,刘启元等.2010.川西地区台阵环境噪声瑞利波相速度层析成像.地球物理学报,53(4):842-852.
    王椿镛,吴建平,楼海等.2003a.川西藏东地区的地壳P波速度结构.中国科学(D辑),33(S1):181-189.
    王椿镛,韩渭宾,吴建平等.2003b.松潘-甘孜造山带地壳速度结构.地震学报,25(3):229-241.
    王椿镛,楼海,姚志祥等.2010.龙门山及其邻区的地壳厚度和泊松比.第四纪研究,30(4):652-661.
    吴庆举,田小波,张乃铃等.2003.用小波变换方法反演接收函数.地震学报,25(6):601-607.
    朱介寿,王绪本,杨宜海等.2017.青藏高原东缘的地壳流及动力过程.地球物理学报,60(6):2038-2057,doi:10.6038/cjg20170602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700