基于OPC技术的水冷PEMFC热管理控制系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THERMAL MANAGEMENT SYSTEM OF WATER-COOLED PEMFC BASED ON OPC TECHNOLOGY
  • 作者:牛茁 ; 张玉瑾 ; 邓惠文 ; 陈维荣 ; 刘志祥
  • 英文作者:Niu Zhuo;Zhang Yujin;Deng Huiwen;Chen Weirong;Liu Zhixiang;School of Electrical Engineering,Southwest Jiaotong University;
  • 关键词:质子交换膜燃料电池 ; 耦合 ; PLC ; 控制 ; OPC技术
  • 英文关键词:PEMFC;;coupling;;PLC;;control;;OPC technology
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:西南交通大学电气工程学院;
  • 出版日期:2019-04-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:国家科技支撑计划(2014BAG08B01);; 国家自然科学基金面上项目(51677157)
  • 语种:中文;
  • 页:TYLX201904008
  • 页数:8
  • CN:04
  • ISSN:11-2082/TK
  • 分类号:58-65
摘要
为改善传统温度控制方法在水冷型质子交换膜燃料电池(PEMFC)系统工作中出现的冷却水泵和散热器风扇的强耦合特性,该文提出一种流量跟随功率的改进温度控制策略。通过OPC技术(用于过程控制的OLE)实现可编程逻辑控制器(PLC)和Matlab的实时通讯,利用Matlab/Simulink模拟电堆功率和输出控制量。最后,在水冷PEMFC热管理实验平台对流量跟随功率控制与传统温度控制策略进行实验对比,实验结果表明,流量跟随功率控制策略实现了冷却水泵和散热器风扇有效解耦,具有较好的控制精度和响应速度,取得了优于传统温度控制策略的控制效果,能够满足水冷PEMFC系统对温度控制的需求。
        In order to solve the strong coupling problem that exists during the operation process of the water-cooled proton exchange membrane fuel cell(PEMFC),a flow-following-power strategy focusing on temperature control was proposed in this paper. The OPC(OLE for Process Control) technology was introduced to achieve real-time communication between Matlab and PLC while the simulation of stack power and the output of control variable were completed in Matlab/Simulink. Finally,comparative experiments between the traditional control strategy and the flowfollowing-power strategy were made on a thermal management test platform of water-cooled PEMFC. The experimental results indicate that the flow-following-power strategy is superior to the traditional control strategy in controlling precision and response speed by means of effectively decoupling between water pump and radiator fan. The proposed strategy can well satisfy the temperature controlling requirements of the water-cooled PEMFC.
引文
[1] Peighambardoust S, Rowshanzamir S, Amjadi M.Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy,2010,35(1):9349—9384.
    [2] Liu Zhixiang,Zhang Haiyong,Wang Cheng,et al.Numerical simulation for rib and channel position effect on PEMFC performances[J]. International Journal of Hydrogen Energy,2010,35(7):2802—2806.
    [3] Zhao Dongdong, Gao Fei, Massonnat P, et al.Parameter sensitivity analysis and local temperature distribution effect for a PEMFC system[J]. IEEE Transactions on Energy Conversion,2015,30(3):1008—1018.
    [4] Kandlikar S G,Lu Zijie. Thermal management issues in a PEMFC stack:A brief review of current status[J].Applied Thermal Engineering,2009,29(7):1276—1280.
    [5] Rojas J D,Ocampo-Martinez C,Kunusch C. Thermal modeling approach and model predictive control of a water-cooled PEM fuel cell system[A]. IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society[C],Vienna,Austria,2013.
    [6]谷靖,卢兰光,欧阳明高.燃料电池热管理子系统建模与温度控制[J].清华大学学报:自然科学版,2007,47(11):2036—2039.[6] Gu Jing, Lu Languang, Ouyang Minggao. Thermal management subsystem model and temperature control for fuel cells[J]. Journal of Tsinghua University:Science and Technology,2007,47(11):2036—2039.
    [7]胡鹏,曹广益,朱新坚.质子交换膜燃料电池温度模型与模糊控制[J].控制理论与应用,2011,28(10):1371—1376.[7] Hu Peng, Cao Guangyi, Zhu Xinjian. Temperature model and fuzzy control for the proton-exchangemembrane fuel cell[J]. Control Theory and Application,2011,28(10):1371—1376.
    [8]王斌锐,金英连,褚磊民,等.空冷燃料电池最佳温度及模糊增量PID控制[J].中国电机工程学报,2009,29(8):109—114.[8] Wang Binrui, Jin Yinglian, Chu Leimin, et al.Temperature optimization and fuzzy incremental PID control for air-breathing proton exchange membrane fuel cell stack[J]. Proceedings of the CSEE,2009,29(8):109—114.
    [9]李春华,朱新坚.基于递归模糊神经网络的PEMFC温度控制研究[J].热能动力工程,2012,27(6):721—725.[9] Li Chunhua,Zhu Xinjian. Study of the temperature control of a proton exchange membrane fuel cell(PEMFC)based on a regressive fuzzy neural network[J]. Journal of Engineering for Thermal Energy and Power,2012,27(6):721—725.
    [10] Kim Sunhoe,Shimpalee S,Van Zee J W. The effect of stoichiometry on dynamic behavior of a proton exchange membrane fuel cell(PEMFC)during load change[J].Journal of Power Source,2004,135(1-2):110—121.
    [11] Pukrushpan J T, Stefanopoulou A G, Peng Huei.Control of fuel cell power systems[M]. Berlin:Springer,2004,31—53.
    [12] Yang Yanxia,Luo Xu,Dai Chaohua,et al. Dynamic modeling and dynamic responses of grid-connected fuel cell[J]. International Journal of Hydrogen Energy,2014,39(26):14296—14305.
    [13] Mahmoud M S,Sabih M,Elshafei M. Using OPC technology to support the study of advanced process control[J]. ISA Transactions,2015,55:155—167.
    [14]王杰,高昆仑,王万召.基于OPC通信技术的火电厂DCS后台控制[J].电力自动化设备,2013,33(4):142—147.[14] Wang Jie,Gao Kunlun,Wang Wanzhao. Thermal power plant DCS for background control based on OPC communication technology[J]. Electric Power Automation Equipment,2013,33(4):142—147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700