MCF介孔分子筛负载Co催化环己基过氧化氢分解
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MCF Mesoporous Molecular Sieve Supported Co Catalyzed Decomposition of Cyclohexyl Hydroperoxide
  • 作者:郭一曼 ; 马莉娟 ; 陈小梅 ; 袁霞
  • 英文作者:GUO Yi-man;MA Li-juan;CHEN Xiao-mei;YUAN Xia;College of Chemical Engineering, Xiangtan University;
  • 关键词: ; MCF ; 环己基过氧化氢 ; 分解
  • 英文关键词:cobalt;;MCF;;cyclohexyl hydroperoxide;;decomposition
  • 中文刊名:FZCH
  • 英文刊名:Journal of Molecular Catalysis(China)
  • 机构:湘潭大学化工学院;
  • 出版日期:2019-05-14 15:55
  • 出版单位:分子催化
  • 年:2019
  • 期:v.33;No.184
  • 基金:国家自然科学基金资助项目(No.21776237);; “环境友好与资源高效利用化工新技术”湖南省高校2011协同创新中心资助项目~~
  • 语种:中文;
  • 页:FZCH201902006
  • 页数:9
  • CN:02
  • ISSN:62-1039/O6
  • 分类号:45-53
摘要
以P123为模板剂, 1,3,5-三甲苯(TMB)为扩孔剂,正硅酸乙酯(TEOS)为硅源,六水硝酸钴为钴源,在酸性条件下原位合成XCo-MCF(X=4%, 8%, 10%, 20%)介孔分子筛.采用FT-IR、 UV-Vis、氮气物理吸附、 XRD、 XPS、 H_2-TPR等手段对XCo-MCF的结构进行表征,并在环己基过氧化氢(CHHP)分解反应中进行了催化性能评价. UV-Vis、 XPS和XRD等表征结果表明, XCo-MCF中钴主要以Co_3O_4的形式存在.以CHHP含量为7.2%(重量百分比)的环己烷氧化液为原料, XCo-MCF催化CHHP分解,在80℃反应90 min, CHHP分解转化率均在90%以上,其中8%Co-MCF为催化剂时, CHHP转化率达到95.7%,环己醇和环己酮选择性分别为77.5%和53.4%.经过4次回收重复使用后,催化剂仍能够保持较高的活性, ICP表征表明各催化剂活性组分均存在一定程度的流失,负载量达到20%时,活性组分的流失速率得到明显抑制.
        Cobalt-containing mesoporous molecular sieves XCo-MCF(X=4%, 8%, 10%, 20%) were synthesized in situ under acidic conditions using P123 as template, 1,3,5-trimethylbenzene(TMB) as pore-enlarging agent, tetraethyil orthosilicate(TEOS) as silicon source, and Co(NO_3)_2·6 H_2O as cobalt source. The structures of XCo-MCF were characterized by the methods of FT-IR, UV-Vis, N_2 adsorption/desorption, XRD, XPS and H_2-TPR. The catalytic performance of the obtained samples was evaluated in decomposition of cyclohexyl hydroperoxide(CHHP). The characterization results of UV-Vis, XPS and XRD indicated that cobalt in XCo-MCF mainly existed in the form of Co_3O_4. The cyclohexane oxidation solution with CHHP content of 7.2%( Weight percentage) was used as raw material, the decomposition of CHHP was catalyzed by XCo-MCF at 80 ℃ for 90 min. The conversion of CHHP is above 90%. 8%Co-MCF showed the better catalytic performance with a conversion of 95.7% and the selectivity of cyclohexanol 77.5% and cyclohexanone 53.4%. After four times of repeated uses, the catalysts still maintained high activity. The ICP characterization results showed that the active components of each catalyst were lost to some extent. When the loading amount of Cobalt reached 20%, the loss rate of the active components was significantly inhibited.
引文
[1]Zhou L,Xu J,Miao H,et al.Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4nanocrystals with molecular oxygen[J].Appl Catal Gener,2005,292(1):223-228.
    [2]Li Yong-jun(李勇军).Study on the catalytic decomposition of cyclohexyl hydroperoxide by solid superbase(固体超强碱催化分解环己基过氧化氢的工艺研究)[J].Synt Fib Indus(合成纤维工业),2012,35(4):24-26.
    [3]Hansen C B,Agterberg F P W,Eijndhoven A M C V,et al.Decomposition of cyclohexyl hydroperoxide catalysed by ruthenium porphyrins.Hydroxylation of the solvent cyclohexane[J].J Mol Catal Chem,1995,102(3):117-128.
    [4]Li Yong-xiang(李永祥),Song Xing-xing(宋星星),Wu Wei(吴巍),et al.Kinetics of hydrogenation and decomposition of cyclohexyl hydroperoxide over Pd/Ccatalyst(在Pd/C催化剂上环己基过氧化氢加氢分解反应动力学)[J].Petro Sin Petrol Proce(石油学报(石油加工)),2006,22(5):51-55.
    [5]Sun Bin(孙斌),Cheng Shi-biao(程时标),Wu Wei(吴巍),et al.Study on the decomposition reaction of cyclohexyl hydroperoxide by chromium-containing molecular sieves(含铬分子筛催化环己基过氧化氢分解反应研究)[J].Petrol Refin Chem Indus(石油炼制与化工),2006,37(1):20-24.
    [6]Loncarevic D,Krstic J,Dostanic J,et al.Cyclohexane oxidation and cyclohexyl hydroperoxide decomposition by poly(4-vinylpyridine-co-divinylbenzene)supported cobalt and chromium complexes[J].Chem Engineer J,2010,157(1):181-188.
    [7]Guo Lu-lu(郭露露),Li Li-xia(李立霞),He Pengcheng(何鹏程),et al.Study on the decomposition of cyclohexyl hydroperoxide by mesoporous material Co/SBA-15(介孔材料Co/SBA-15催化环己基过氧化氢分解的研究)[J].J Inorg Mater(无机材料学报),2017,32(5):543-549.
    [8]Pustarnakova G F,Solyanikov V M.Decomposition of cyclohexyl hydroperoxide,catalyzed by the vanadyl acetylacetonate[J].Bull Acad Sci Ussr Divis Chem Sci,1974,23(10):2110-2114.
    [9]Hao Z,Li S,Sun J,et al.Efficient visible-light-driven depolymerization of oxidized lignin to aromatics catalyzed by an iridium complex immobilized on mesocellular silica foams[J].Appl Catal B Environ,2018,237:366-372.
    [10]Yang Li-xin(杨新丽),Yin An-yuan(尹安远),Dai Wei-lin(戴维林),et al.Synthesis of highly efficient WO3-doped MCF catalyst and its application in the selective oxidation of cyclopentene to glutaraldehyde(高效WO3掺杂MCF催化剂的合成及其在环戊烯选择氧化制戊二醛反应中的应用)[J].Acta Phys-Chim Sin((物理化学学报),2011,27(1):177-185.
    [11]Wang C,Tian C,Guo Y,et al.Ruthenium oxides supported on heterostructured Co PO-MCF materials for catalytic oxidation of vinyl chloride emissions[J].J Hazar Mater,2017,342:290-296.
    [12]Li L,Tian C,Chai S H,et al.Gold nanocatalysts supported on heterostructured Pb SO4-MCF mesoporous materials for CO oxidation[J].Catal Commun,2014,46(5):234-237.
    [13]Meer J V D,Bardez-Giboire I,Mercier C,et al.Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique[J].J Phys Chem C,2010,114(8):3507-3515.
    [14]Hashemian S,Sadeghi B,Mangeli M.Hydrothermal synthesis of nano cavities of Al-MCF for adsorption of indigo carmine from aqueous solution[J].J Indus&Engineer Chem,2015,21(1):423-427.
    [15]Tsoncheva T,Ivanova L,Rosenholm J,et al.Cobalt oxide species supported on SBA-15,KIT-5 and KIT-6mesoporous silicas for ethyl acetate total oxidation[J].Appl Catal B Environ,2009,89(3):365-374.
    [16]Szegedi,Popova M,Minchev C.Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation[J].J Mater Sci,2009,44(24):6710-6716.
    [17]Katsoulidis A P,Petrakis D E,Armatas G S,et al.Ordered mesoporous Co Ox/MCM-41 materials exhibiting long-range self-organized nanostructured morphology[J].Micro&Mes Mater,2006,92(1):71-80.
    [18]Patrick Schmidtwinkel,Lukens W W,Dongyuan Zhao,et al.Mesocellular siliceous foams with uniformly sized cells and windows[J].J Amer Chem Soc,1999,121(1):254-255.
    [19]Patrick Schmidtwinkel,Lukens W W,Peidong Yang,et al.Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores[J].Chem Mater,2000,12(3):686-696.
    [20]Tang Q,Zhang Q,Wu H,et al.Epoxidation of styrene with molecular oxygen catalyzed by cobalt(II)-containing molecular sieves[J].J Catal,2005,230(2):384-397.
    [21]Li Jin-lin(李金林),Wan You-jun(完友军),Zhang Yu-hua(张煜华),et al.Study on reduction process of cobalt-based fischer-tropsch synthesis catalyst supported by different supports(不同载体负载的钴基费-托合成催化剂的还原过程研究)[J].J South-Centr Univer Nation(Nat Sci Edit)(中南民族大学学报(自然科学版)),2007,26(2):5-10.
    [22]Robles-Dutenhefner P A,Rocha K A D S,Sousa E MB,et al.Cobalt-catalyzed oxidation of terpenes:CoMCM-41 as an efficient shape-selective heterogeneous catalyst for aerobic oxidation of isolongifolene under solvent-free conditions[J].J Catal,2009,265(1):72-79.
    [23]Wei L,Zhao Y,Zhang Y,et al.Fischer-Tropsch synthesis over a 3D foamed MCF silica support:Toward a more open porous network of cobalt catalysts[J].J Catal,2016,340:205-218.
    [24]Anand R,Hamdy M S,Gkourgkoulas P,et al.Liquid phase oxidation of cyclohexane over transition metal incorporated amorphous 3D-mesoporous silicates M-TUD-1(M=Ti,Fe,Co and Cr)[J].Catal Today,2006,117(1):279-283.
    [25]Zheng X,Ma J,Wang M,et al.Coupling reaction in catalytic decomposition of cyclohexyl hydroperoxide[J].Catal Commun,2017,101:77-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700