GO-PTFE-C涂层改性Ti金属板的防腐性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Protection of GO-PTFE-C Composite Coatings on Ti Alloy Plate
  • 作者:王骏斌 ; 谢志勇 ; 高平平 ; 伍小波 ; 陶韬 ; 欧阳涛 ; 黄启忠
  • 英文作者:WANG Jun-bin;XIE Zhi-yong;GAO Ping-ping;WU Xiao-bo;TAO Tao;OUYANG Tao;HUANG Qi-zhong;State Key Laboratory of Powder Metallurgy, Central South University;
  • 关键词:钛基双极板 ; 水热法 ; 浸渍法 ; 石墨烯 ; 耐蚀性 ; 质子交换膜燃料电池
  • 英文关键词:Ti-based bipolar plate;;hydrothermal;;impregnation method;;graphene;;corrosion resistance;;proton exchange membrane fuel cell
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中南大学粉末冶金研究院;
  • 出版日期:2019-03-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:中国国家重点研发计划(No.2016YFB0101310)~~
  • 语种:中文;
  • 页:BMJS201903023
  • 页数:6
  • CN:03
  • ISSN:50-1083/TG
  • 分类号:163-168
摘要
目的提高钛金属板的抗腐蚀性能。方法采用水热浸渍两道工序在Ti双极板上制备GO-PTFE-C复合改性涂层。使用0.1 mol/L葡萄糖溶液作为碳源,在170℃+10 h条件下,于反应釜中完成碳涂层制备。对获得的涂层进行热处理,浸渍5%(质量分数)的聚四氟乙烯(PTFE)溶液和不同浓度氧化石墨烯(GO)的混合悬浮液后,在350℃热处理得到涂层。采用傅氏转换红外线光谱分析仪(FTIR)、扫描电子显微镜(SEM)和能谱仪(EDS)分析表面形貌和成分,选取三电极体系并利用电化学工作站(CHI 660e)表征改性前后双极板电化学性能,在模拟质子交换膜燃料电池(PEMFC)环境中测试其抗腐蚀性能。结果与单一的碳涂层相比,GO-PTFE表面具有更多的C=O官能团,同时由于聚四氟乙烯表面的F与含氧官能团的氧原子电子云的诱导效应,涂层附着力明显提高。其中,采用5%PTFE+3 g/L GO浸渍的涂层的腐蚀电流密度和接触角分别为0.008μA/cm~2和103.6°,恒电位极化测试(0.6 V和-0.1 V)显示,涂层的腐蚀电流密度均低于1μA/cm~2。结论以碳涂层为基体,浸渍GO和PTFE的混合液后,制备所得的钛基双极板在PEMFC的双极板中显示出巨大的应用前景。
        The work aims to improve corrosion resistance of Ti alloy plate. Two-step hydrothermal impregnation method was adopted to prepare GO-PTFE-C composite coating on Ti bipolar plates. 0.1 mol/L glucose solution was used as carbon source to prepare carbon coating in a reaction still after 170 ℃ + 10 h hydrothermal impregnation treatment. The as-received coating was subsequently impregnated with 5 wt.% polytetrafluoroethylene(PTFE) solution containing different amount of graphene oxide(GO) and treated at 350 ℃. Fourier Transform infrared spectroscopy(FTIR), Scanning Electron Microscopy(SEM) and Energy Dispersive Spectroscopy(EDS) were applied to characterize the surface morphology and composition of coating. Besides, by electrochemical workstation(CHI 660 e), a 3-compartment cell was configured to characterize the electrochemical performances of bipolar plates before/after surface modification, and test corrosion performances in environment simulating Proton Exchange Membrane Fuel Cell(PEMFC). Compared with single carbon coating, GO-PTFE surface had more C==O functional groups. At the same time, the induction effect of F on the surface of polytetrafluoroethylene and oxygen atom electron cloud containing oxygen functional groups could obviously improve the adhesion of the coating. Corrosion current density and contact angle of the coating impregnated with 5 wt.% PTFE + 3 g/L GO were 0.008 μA/cm~2 and 103.6°, respectively. At the same time, the constant current polarization test(0.6 V and –0.1 V) showed that the corrosion current density of the coating was less than 1 μA/cm~2. Therefore, the Titanium-based bipolar plates prepared by impregnating GO and PTFE with carbon coatings shows great potential of application in the bipolar plate of PEMFC.
引文
[1]LYO H,SU H,DONG C,et al.Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells[J].Journal of alloys&compounds,2016,686:216-226.
    [2]CAGLAR B,FISCHER P,KAURANEN P,et al.Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J].Journal of power sources,2014,256(256):88-95.
    [3]LIN K,LI X,DONG H,et al.Surface modification of 316stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells[J].International journal of hydrogen energy,2017,42(4):2338-2348.
    [4]GAO P,XIE Z,OUYNG C,et al.Carbon composite coatings on Ti for corrosion protection as bipolar plates of proton exchange membrane fuel cells[J].Iet micro&nano letters,2018,13(7):931-935.
    [5]OLIVEIRA M C L D,SAYEG I J,ETT G,et al.Corrosion behavior of polyphenylene sulfide-carbon black-graphite composites for bipolar plates of polymer electrolyte membrane fuel cells[J].International journal of hydrogen energy,2014,39(29):16405-16418.
    [6]NAM S,LEE D,DAI G L,et al.Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery(VRFB)[J].Composite structures,2017,159:220-227.
    [7]EEL-ENIN S A A,ABDEL-SALAM O E,EL-ABD H,et al.New electroplated aluminum bipolar plate for PEMfuel cell[J].Journal of power sources,2008,177(1):131-136.
    [8]YUE H,EL-KHATIB K M,TAWFIK H.Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operating at 70℃[J].Journal of power sources,2006,163(1):509-513.
    [9]ANTUNES R A,OLIVERIRA M C L,ETT G,et al.Corrosion of metal bipolar plates for PEM fuel cells:A review[J].International journal of hydrogen energy,2010,35(8):3632-3647.
    [10]SISAN M M,SERESHKI M A,KHORSAND H,et al.Carbon coating for corrosion protection of SS-316L and AA-6061 as bipolar plates of PEM fuel cells[J].Journal of alloys&compounds,2014,613(7):288-291.
    [11]ZHAO Y,WEI L,YI P,et al.Influence of Cr-C film composition on electrical and corrosion properties of316L stainless steel asbipolar plates for PEMFCs[J].International journal of hydrogen energy,2016,41(2):1142-1150.
    [12]FENG K,LI Z,LU F,et al.Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel[J].Journal of power sources,2014,249(3):299-305.
    [13]ZHANG W,CAO H,FENG X,et al.Structure and wettability control of Cu-Ni-P alloy synthesized by electroless deposition[J].Journal of alloys&compounds,2012,538(10):144-152.
    [14]SANGEETHA S,KALAIGNAN G P,ANTHUVAN J T.Pulse electrodeposition of self-lubricating Ni-W/PTFEnanocomposite coatings on mild steel surface[J].Applied surface science,2015,359:412-419.
    [15]ZHAO Y,WEI L,YI P,et al.Influence of Cr-C film composition on electrical and corrosion properties of316L stainless steel asbipolar plates for PEMFCs[J].International journal of hydrogen energy,2016,41(2):1142-1150.
    [16]ZHANG D,DUAN L,GUO L,et al.Corrosion behavior of Ti N-coated stainless steel as bipolar plate for proton exchange membrane fuel cell[J].International journal of hydrogen energy,2010,35(8):3721-3726.
    [17]LARIJANI M M,YARI M,AFSHAR A,et al.A comparison of carbon coated and uncoated 316L stainless steel for using as bipolar plates in PEMFCs[J].Journal of alloys&compounds,2011,509(27):7400-7404.
    [18]FENG K,HU T,CAI X,et al.Ex situ and in situ evaluation of carbon ion-implanted stainless steel bipolar plates in polymer electrolyte membrane fuel cells[J].Journal of power sources,2012,199(1):207-213.
    [19]BI F,PENG L,YI P,et al.Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells[J].Journal of power sources,2016,314:58-65.
    [20]LIU S X,CHEN X Y,CHEN X.A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method.[J].Journal of hazardous materials,2007,143(1):257-263.
    [21]LEE H R,KIM H J,PARK J H,et al.One-pot synthesis of carbon-coated SnO2 nano-composite using hydrothermal method for lithium ion battery application[J].Journal of nanoscience&nanotechnology,2013,13(6):4141.
    [22]ALADJEM A.Anodic oxidation of titanium and its alloys[J].Journal of materials science,1973,8(5):688-704.
    [23]LIU S,GU L,ZHAO H,et al.Corrosion resistance of graphene-reinforced waterborne epoxy coatings[J].Journal of materials science&technology,2016,32(5):425-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700