单片集成的低暗电流1.3μm激光二极管和探测器芯片
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monolithically integrated low dark current 1.3 μm laser diode and detector chip
  • 作者:丘文夫 ; 林中晞 ; 苏辉
  • 英文作者:Qiu Wenfu;Lin Zhongxi;Su Hui;Fujian Institute of Research on the Structure, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:半导体激光二极管 ; 背光探测器 ; 隔离区 ; 低暗电流
  • 英文关键词:semiconductor laser diode;;monitoring photo diode;;isolation region;;low dark current
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院福建物质结构研究所;中国科学院大学;
  • 出版日期:2018-12-25
  • 出版单位:红外与激光工程
  • 年:2018
  • 期:v.47;No.290
  • 基金:国家863计划(2013AA014202)
  • 语种:中文;
  • 页:HWYJ201812044
  • 页数:5
  • CN:12
  • ISSN:12-1261/TN
  • 分类号:281-285
摘要
为了在单片上实现半导体激光二极管与探测器的集成,开展了外延材料生长及结构工艺的设计研究。通过刻蚀工艺引入隔离区的方法制备了集成背光探测器的1.3μm InGaAsP/InP半导体激光二极管芯片。管芯的光电性能测试显示,激光二极管具有较低的阈值电流17.62 m A,较高的斜率效率0.13 m W/mA,输出功率可达11 m W;在-0.7 V的反向偏压下,探测器区域对光信号具有良好的线性响应,MPD的光电流超过0.3 m A,在-1.7 V的反向偏压下,暗电流可低至25 nA。
        In order to realize the integration of semiconductor laser diodes and detectors on a single chip,the research on the epitaxial material growth and structural process was carried out. A 1.3 μm InGaAsP/InP semiconductor laser diode chip with integrated monitoring photo diode(MPD) was fabricated by introducing an isolation region using an etching process. The photoelectric performance test of the chip shows that the laser diode has a low threshold current(17.62 m A) and high slope efficiency(0.13 m W/mA);the output power can reach 11 m W. In addition, under a reverse bias of-0.7 V, the detector region has a good linear response to the optical signal and the photocurrent of the MPD exceeds 0.3 m A, and the dark current can be as low as 25 nA with a reverse bias of-1.7 V.
引文
[1] Kim D C, Kown O K, Kim H S, et al. Experimental comparison between front-side and rear-side signalmonitoring in RSOA transistor outline can modules with monitor-photo diode and thermo electric cooler[J]. IEEE Photon Technol Lett, 2010, 22(20):1527-1529.
    [2] Wang De, Li Xueqian. Lasted development and applications of semiconductor lasers[J]. Optics and Precision Engineering, 2001, 9(3):279-283.(in Chinese)
    [3] Hai Yina, Zou Yonggang, Tian Kun, et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J].Chinese Optics, 2017, 10(2):194-206.(in Chinese)
    [4] Wu Guiying. The development of optical communication[J].Optics and Precision Engineering, 1978(2):65-67.(in Chinese)
    [5] Kobayashi W, Arai M, Yamanaka T, et al. Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure[J]. J Lightwave Technol, 2010, 28(1):164-171.
    [6] Shinoda K, Makino S, Kitatani T, et al. InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced longwavelength optoelectronic devices[J]. IEEE Journal of Quantum Electron, 2009, 45(9):1201-1209.
    [7] Takahashi H, Shimamura T, Sugiyama T, et al. High-power25 Gb/s electroabsorption modulator integrated with a laser diode[J]. IEEE Photon Technol Lett, 2009, 21(10):633-635.
    [8] Yang J, Bhattacharya P, Wu Z. Monolithic integration of InGaAs-GaAs quantum-dot laser and quantum-well electroabsorption modulator on silicon[J]. IEEE Photon Technol Lett, 2007, 19(10):747.
    [9] Hu Yadong, Hu Qiaoyun, Su Bin, et al. Impact of dark current on SWIR polarimetry accuracy[J]. Infrared and Laser Engineering, 2015, 44(8):2375-2381.(in Chinese)
    [10] Gong Haime, Liu Dafu. Developments and trend in spaceborne infrared detectors.[J]. Infrared and Laser Engineering, 2008, 37(1):19-24.(in Chinese)
    [11] Matsui T, Sugimoto H, Ohtsuka K, et al. GaInAsAP/InP mass transport laser monolithically intefrated with photodetector using reactive ion etching[J]. Electron Lett, 1989,25(15):955-956.
    [12] Dutta N K, Cella T, Zilko J L, et al. Monolithically integrated laser/photo-diode[J]. Electron Lett, 1988, 24(6):355-356.
    [13] Yang Chyida, Lei Pohsun. Lateral power-monitoring photodiode monolithically integrated into 1.3μm GaInAsP laser[J]. Solid-State Electronics, 2012, 67(1):63-69.
    [14] LUXNET corporation. 1 310/1 550 nm Power-Monitor PIN.[EB/OL].[2017-12-09]. http://www.luxnetcorp.com.tw/datasheet_files/DI0A-7025%20_version3.1_%5B3%5D.pdf
    [15] Xu Lefei, Liu Dafu, Gong Haimei, et al. Low temperature spectroscopy quantification of integrated dual band chip package[J]. Chinese Optics, 2017, 10(6):744-751.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700