丙二酸二乙酯加氢制备1,3-丙二醇反应动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Kinetic study of diethyl malonate hydrogenation over copper-based catalyst
  • 作者:余锦涛 ; 曹景顺 ; 王涛 ; 魏永梅 ; 田恒水
  • 英文作者:YU Jin-tao;CAO Jing-shun;WANG Tao;WEI Yong-mei;TIAN Heng-shui;School of Chemical Engineering, East China University of Science and Technology;
  • 关键词:动力学 ; 丙二酸二乙酯 ; 1 ; 3-丙二醇 ; 铜基催化剂
  • 英文关键词:kinetics;;diethyl malonate;;1,3-propanediol;;copper-based catalyst
  • 中文刊名:TRQH
  • 英文刊名:Natural Gas Chemical Industry
  • 机构:华东理工大学化工学院;
  • 出版日期:2019-02-25
  • 出版单位:天然气化工(C1化学与化工)
  • 年:2019
  • 期:v.44;No.244
  • 语种:中文;
  • 页:TRQH201901010
  • 页数:7
  • CN:01
  • ISSN:51-1336/TQ
  • 分类号:40-46
摘要
铜基催化剂催化丙二酸二乙酯加氢一条绿色制备1,3-丙二醇的路线。在消除内外扩散的基础上,根据丙二酸二乙酯加氢反应体系建立本征动力学反应模型,得到了在实验条件下适定的动力学模型、反应物的吸附方式和速率控制步骤。进一步通过该模型的活化能、吸附焓和指前因子计算,说明了提高选择性催化酯基能力和抑制副产物丙酸乙酯的生成是以后提高丙二酸二乙酯加氢制备1,3-丙二醇的关键。为以后合理设计催化丙二酸二乙酯加氢制备1,3-丙二醇的铜基催化剂提供了基础。
        The synthesis of 1,3-propanediol through diethyl malonate hydrogenation have received considerable attention due to its low-cost and eco-friendly advantages. The intrinsic kinetic models were proposed based on different rate-determining and adsorption steps including dissociative and molecular ways. Besides, the parameters in obtained appropriate kinetic model was carefully calculated and were further examined with the criterions. The reaction rate constants and adsorption equilibrium constants suggest the improvement of 1,3-propanediol yield lies on enhancement of selectively active C =O groups and inhibition of ethyl propionate products. The available information in this study provides a direction to rationally design copper-based catalyst for diethyl malonate hydrogenation process.
引文
[1]Zheng J, Zhou J, Lin H, et al. CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol[J]. J Phys Chem C, 2015, 119(24):13758-13766.
    [2]Wang Z Q, Xu Z N, Peng S Y, et al. High-Performance and Long-Lived Cu/SiO2nanocatalyst for CO2hydrogenation[J]. ACS Catal, 2015, 5(7):4255-4259.
    [3]Huang Z, Barnett K J, Chada J P, et al. Hydrogenation ofγ-Butyrolactone to 1,4-Butanediol over CuCo/TiO2bimetallic catalysts[J]. ACS Catal, 2017, 7(12):8429-8440.
    [4]Liu H, Huang Z, Kang H, et al. Efficient bimetallic NiCuSiO2catalysts for selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol[J]. Appl Catal B,2018, 220(1):251-263.
    [5]Yue H, Zhao Y, Ma X, et al. Ethylene glycol:properties,synthesis, and applications[J]. Chem Soc Rev, 2012, 41(11):4218-44.
    [6]Zhao Y, Li S, Wang Y, et al. Efficient tuning of surface copper species of Cu/SiO2catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chem Eng J, 2017,313(1):759-768.
    [7]Chen L F, Guo P J, Zhu L J, et al. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1, 4-butanediol[J]. Appl Catal A,2009, 356(2):129-136.
    [8]Ding T M, Tian H S, Liu J C, et al. Effect of promoters on hydrogenation of diethyl malonate to 1,3-propanediol over nano copper-based catalysts[J]. Catal Commun., 2016, 74(1):10-15.
    [9]Yu J T, Cao J S, Du L H, et al. Enhancement of diethyl malonate hydrogenation to 1,3-propanediol using mesoporous Cu/SBA-15 as catalyst[J]. Appl Catal A,2018, 555(1):161-170.
    [10]Haas T, Jaeger B, Weber R, et al. New diol processes:1,3-propanediol and 1,4-butanediol[J]. Appl Catal A,2005, 280(1):83-88.
    [11]Kraus G A. Synthetic Methods for the Preparation of 1,3-Propanediol[J]. CLEAN-Soil, Air, Water, 2008, 36(8):648-651.
    [12]Kurian J V. A New Polymer Platform for the FutureSorona from Corn Derived 1,3-Propanediol[J]. J Polym Environ., 2005, 13(2):159-167.
    [13]Chen L, Guo P, Qiao M, et al. Cu/SiO2catalysts prepared by the ammonia-evaporation method:Texture, structure,and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2008, 257(1):172-180.
    [14]Ding J, Popa T, Tang J, et al. Highly selective and stable Cu/SiO2catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol[J].Appl Catal B, 2017, 209(1):530-542.
    [15]He Z, Lin H, He P, et al. Effect of boric oxide doping on the stability and activity of a Cu-SiO2catalyst for vaporphase hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2011, 277(1):54-63.
    [16]Ding T, Tian H, Liu J, et al. Highly active Cu/SiO2catalysts for hydrogenation of diethyl malonate to 1, 3-propanediol[J]. Chin J Catal, 2016, 37(4):484-493.
    [17]Ding T, Tian H, Zhao B. Synthesis of 1,3-propanediol through diethyl malonate hydrogenation on Cu/SiO2nanoparticles[J]. React Kinet Mech Cat, 2016, 118(2):497-508.
    [18]Zheng S, Zhu K, Li W, et al. Hydrogenation of dimethyl malonate to 1,3-propanediol catalyzed by a Cu/SiO2catalyst:the reaction network and the effect of Cu+/Cu0on selectivity[J]. New J Chem, 2017, 41(13):5752-5763.
    [19]Xu G H, Li Y C, Li Z H, et al. Kinetics of the hydrogenation of diethyl oxalate to ethylene glycol[J]. Ind Eng Chem Res, 1995, 34(7):2371-2378.
    [20]Li S, Wang Y, Zhang J, et al. Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2catalyst[J]. Ind Eng Chem Res, 2015, 54(4):1243-1250.
    [21]Ju I B, Jeon W, Park M J, et al. Kinetic studies of vaporphase hydrogenolysis of butyl butyrate to butanol over Cu/ZnO/Al2O3catalyst[J]. Appl Catal A, 2010, 387(1-2):100-106.
    [22]Sitthisa S, Sooknoi T, Ma Y, et al. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2catalysts[J]. J Catal, 2011, 277(1):1-13.
    [23]Chaudhari R, Jaganathan R, Vaidya S, et al. Hydrogenation of diethyl maleate in a fixed-bed catalytic reactor:kinetics, reactor modelling and pilot plant studies[J].Chem Eng Sci, 1999, 54:3643-3651.
    [24]Kohler M A, Wainwright M S, Trimm D L, et al. Reaction kinetics and selectivity of dimethyl succinate hydrogenolysis over copper-based catalysts[J]. Ind Eng Chem Res, 1987, 26(4):652-656.
    [25]Li Q, Sui Z, Zhou X, et al. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3catalyst[J]. Appl Catal A, 2011,398(1-2):18-26.
    [26]丁同梅,田恒水,赵秉嵚.丙二酸二乙酯加氢合成1,3-丙二醇反应的研究[J].天然气化工—C1化学与化工,2016,41(1):1-4.
    [27]Qi Y, Cheng Z, Zhou Z. Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors:Catalytic activity and reaction kinetics[J]. Chin J Chem Eng, 2015, 23(1):76-85.
    [28]Lin H, Zheng X, He Z, et al. Cu/SiO2hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Appl Catal A, 2012, 445-446(1):287-296.
    [29]Wen C, Cui Y, Chen X, et al. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copperhydroxyapatite catalysts[J]. Appl Catal B, 2015, 162(1):483-493.
    [30]Ye R P, Lin L, Yang J X, et al. A new low-cost and effective method for enhancing the catalytic performance of Cu-SiO2catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin[J]. J Catal, 2017, 350(1):122-132.
    [31]Zheng J, Lin H, Wang Y N, et al. Efficient lowtemperature selective hydrogenation of esters on bimetallic Au-Ag/SBA-15 catalyst[J]. J Catal, 2013, 297(1):110-118.
    [32]Gong J, Yue H, Zhao Y, et al. Synthesis of ethanol via syngas on Cu/SiO2catalysts with balanced Cu0-Cu+sites[J]. J Am Chem Soc, 2012, 134(34):13922-5.
    [33]Li F, Lu C S, Li X N. The effect of the amount of ammonia on the Cu0/Cu+ratio of Cu/SiO2catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J].Chin Chem Lett, 2014, 25(11):1461-1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700