CH_4/N_2 separation on methane molecules grade diameter channel molecular sieves with a CHA-type structure
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CH_4/N_2 separation on methane molecules grade diameter channel molecular sieves with a CHA-type structure
  • 作者:Hua ; Shang ; Yuping ; Li ; Jiaqi ; Liu ; Xuan ; Tang ; Jiangfeng ; Yang ; Jinping ; Li
  • 英文作者:Hua Shang;Yuping Li;Jiaqi Liu;Xuan Tang;Jiangfeng Yang;Jinping Li;Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology;College of Materials Science and Engineering, Taiyuan University of Technology;Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization;
  • 英文关键词:Molecular sieves;;Adsorption;;CH4/N2;;Separation;;Breakthrough
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan University of Technology;College of Materials Science and Engineering, Taiyuan University of Technology;Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization;
  • 出版日期:2019-05-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:financial support from the National Natural Science Foundation of China (Nos. 51672186, 21676175)
  • 语种:英文;
  • 页:ZHGC201905008
  • 页数:6
  • CN:05
  • ISSN:11-3270/TQ
  • 分类号:74-79
摘要
Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH_4/N_2 mixtures. The isotherms recorded for CH_4 and N_2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R~2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH_4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm~3·g~(-1)(STP) of CH_4, due to it having the largest pore volume and surface area, but the lowest selectivity(S_(CH_4/N_2)= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH_4 from low concentration methane(CH_4<20%) based on its larger pore volume and higher CH_4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH_4>50%) due to its higher selectivity.
        Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH_4/N_2 mixtures. The isotherms recorded for CH_4 and N_2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R~2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH_4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm~3·g~(-1)(STP) of CH_4, due to it having the largest pore volume and surface area, but the lowest selectivity(S_(CH_4/N_2)= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH_4 from low concentration methane(CH_4<20%) based on its larger pore volume and higher CH_4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH_4>50%) due to its higher selectivity.
引文
[1]S.Chu,A.Majumdar,Opportunities and challenges for a sustainable energy future,Nature 488(2012)294-303.
    [2]T.N.Lavoie,P.B.Shepson,C.A.Gore,et al.,Assessing the methane emissions from natural gas-fired power plants and oil refineries,Environ.Sci.Technol.51(2017)3373-3381.
    [3]C.?.Karacan,F.A.Ruiz,M.Cotè,et al.,Coal mine methane:A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction,Int.J.Coal Geol.86(2011)121-156.
    [4]Z.Q.Yang,J.R.Grace,C.J.Lim,et al.,Combustion of low-concentration coal bed methane in a fluidized bed,Energy Fuel 25(2011)975-980.
    [5]R.T.Yang,Adsorbents:Fundamentals and Applications,John Wiley&Sons,2003.
    [6]T.E.Rufford,S.Smart,G.C.Y.Watson,et al.,The removal of CO2and N2from natural gas:A review of conventional and emerging process technologies,J.Pet.Sci.Eng.94(2012)123-154.
    [7]N.Heymans,B.Alban,S.Moreau,et al.,Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane,carbon monoxide,carbon dioxide and nitrogen.Application to the syngas generation,Chem.Eng.Sci.66(2011)3850-3858.
    [8]V.P.Mulgundmath,F.H.Tezel,F.Hou,et al.,Binary adsorption behaviour of methane and nitrogen gases,J.Porous.Mater.19(2012)455-464.
    [9]N.K.Jensen,T.E.Rufford,G.Watson,et al.,Screening zeolites for gas separation applications involving methane,nitrogen,and carbon dioxide,J.Chem.Eng.Data 57(2011)106-113.
    [10]J.A.C.Silva,A.Ferreira,P.A.P.Mendes,et al.,Adsorption equilibrium and dynamics of fixed bed adsorption of CH4/N2in binderless beads of 5A zeolite,Ind.Eng.Chem.Res.54(2015)6390-6399.
    [11]S.J.Bhadra,S.Farooq,Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading,Ind.Eng.Chem.Res.50(2011)14030-14045.
    [12]T.E.Rufford,G.C.Y.Watson,T.L.Saleman,et al.,Adsorption equilibria and kinetics of methane-nitrogen mixtures on the activated carbon Norit RB3,Ind.Eng.Chem.Res.52(2013)14270-14281.
    [13]D.S.Yuan,Y.N.Zheng,Q.Z.Li,et al.,Effects of pore structure of prepared coal-based activated carbons on CH4enrichment from low concentration gas by IAST method,Powder Technol.333(2018)377-384.
    [14]Y.Zhang,W.Su,Y.Sun,et al.,Adsorption equilibrium of N2,CH4,and CO2on MIL-101,J.Chem.Eng.Data 60(2015)2951-2957.
    [15]X.Peng,X.Cheng,D.P.Cao,Computer simulations for the adsorption and separation of CO2/CH4/H2/N2gases by UMCM-1 and UMCM-2 metal organic frameworks,J.Mater.Chem.21(2011)11259-11270.
    [16]B.Liu,B.Smit,Molecular simulation studies of separation of CO2/N2,CO2/CH4,and CH4/N2by ZIFs,J.Phys.Chem.C 114(2010)8515-8522.
    [17]X.Q.Wang,L.B.Li,J.F.Yang,et al.,CO2/CH4and CH4/N2separation on isomeric metal organic frameworks,Chin.J.Chem.Eng.24(2016)1687-1694.
    [18]J.Mc Ewen,J.D.Hayman,A.O.Yazaydin,A comparative study of CO2,CH4and N2adsorption in ZIF-8,zeolite-13X and BPL activated carbon,Chem.Phys.412(2013)72-76.
    [19]Z.J.Zhang,Z.Z.Yao,S.C.Xiang,et al.,Perspective of microporous metal-organic frameworks for CO2capture and separation,Energy Environ.Sci.7(2014)2868-2899.
    [20]B.Liu,B.Smit,Comparative molecular simulation study of CO2/N2and CH4/N2separation in zeolites and metal-organic frameworks,Langmuir 25(2009)5918-5926.
    [21]D.Saha,Z.B.Bao,F.Jia,et al.,Adsorption of CO2,CH4,N2O,and N2on MOF-5,MOF-177,and zeolite 5A,Environ.Sci.Technol.44(2010)1820-1826.
    [22]S.Sircar,Basic research needs for design of adsorptive gas separation processes,Ind.Eng.Chem.Res.45(2006)5435-5448.
    [23]Y.J.Xu,Y.Huang,B.Wu,et al.,Biogas upgrading technologies:Energetic analysis and environmental impact assessment,Chin.J.Chem.Eng.23(2015)247-254.
    [24]B.P.C.Hereijgers,F.Bleken,M.H.Nilsen,et al.,Product shape selectivity dominates the Methanol-to-Olefins(MTO)reaction over H-SAPO-34 catalysts,J.Catal.264(2009)77-87.
    [25]J.V.Smith,Crystal structures with a chabazite framework.I.Dehydrated Cachabazite,Acta Crystallogr.15(1962)835-845.
    [26]C.G.Saxton,A.Kruth,M.Castro,et al.,Xenon adsorption in synthetic chabazite zeolites,Microporous Mesoporous Mater.129(2010)68-73.
    [27]A.Bakhtyari,M.Mofarahi,Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A,J.Chem.Eng.Data 59(2014)626-639.
    [28]M.Mofarahi,A.Bakhtyari,Experimental investigation and thermodynamic modeling of CH4/N2adsorption on zeolite 13X,J.Chem.Eng.Data 60(2015)683-696.
    [29]T.Inui,M.Kang,Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion,Appl.Catal.A Gen.164(1997)211-223.
    [30]R.F.Zhou,E.W.Ping,H.H.Funke,et al.,Improving SAPO-34 membrane synthesis,J.Membr.Sci.444(2013)384-393.
    [31]M.R.Hudson,W.L.Queen,J.A.Mason,et al.,Unconventional,highly selective CO2adsorption in zeolite SSZ-13,J.Am.Chem.Soc.134(2012)1970-1973.
    [32]C.Baerlocher,L.B.Mc Cusker,D.H.Olson,Atlas of Zeolite Framework Types,Elsevier,Amsterdam,2007.
    [33]T.D.Pham,Q.Liu,R.F.Lobo,Carbon dioxide and nitrogen adsorption on cationexchanged SSZ-13 zeolites,Langmuir 29(2013)832-839.
    [34]F.N.Ridha,P.A.Webley,Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites,Microporous Mesoporous Mater.132(2010)22-30.
    [35]Y.W.Luo,H.H.Funke,J.L.Falconer,et al.,Adsorption of CO2,CH4,C3H8,and H2O in SSZ-13,SAPO-34,and T-type zeolites,Ind.Eng.Chem.Res.55(2016)9749-9757.
    [36]M.Salmasi,S.Fatemi,M.D.Rad,et al.,Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent,Int.J.Environ.Sci.Technol.10(2013)1067-1074.
    [37]M.E.Rivera-Ramos,G.J.Ruiz-Mercado,A.J.Hernández-Maldonado,Separation of CO2from light gas mixtures using ion-exchanged silicoaluminophosphate nanoporous sorbents,Ind.Eng.Chem.Res.47(2008)5602-5610.
    [38]J.F.Yang,Q.Zhao,H.Xu,et al.,Adsorption of CO2,CH4,and N2on gas diameter grade ion-exchange small pore zeolites,J.Chem.Eng.Data 57(2012)3701-3709.
    [39]J.F.Yang,R.Krishna,J.M.Li,et al.,Experiments and simulations on separating a CO2/CH4mixture using K-KFI at low and high pressures,Microporous Mesoporous Mater.184(2014)21-27.
    [40]J.F.Yang,J.M.Li,W.Wang,et al.,Adsorption of CO2,CH4,and N2on 8-,10-,and 12-membered ring hydrophobic microporous high-silica zeolites:DDR,silicalite-1,and beta,Ind.Eng.Chem.Res.52(2013)17856-17864.
    [41]M.Muttakin,S.Mitra,K.Thu,et al.,Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms,Int.J.Heat Mass Transf.122(2018)795-805.
    [42]K.S.W.Sing,Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(recommendations 1984),Pure Appl.Chem.57(1985)603-619.
    [43]J.Yang,H.Shang,R.Krishna,et al.,Adjusting the proportions of extra-framework K+and Cs+cations to construct a“molecular gate”on ZK-5 for CO2removal,Microporous Mesoporous Mater.268(2018)50-57.
    [44]S.G.Chen,R.T.Yang,Theoretical basis for the potential theory adsorption isotherms.The Dubinin-Radushkevich and Dubinin-Astakhov equations,Langmuir 10(1994)4244-4249.
    [45]R.Sips,On the structure of a catalyst surface,J.Chem.Phys.16(1948)490-495.
    [46]V.P.Mulgundmath,F.H.Tezel,T.Saatcioglu,et al.,Adsorption and separation of CO2/N2and CO2/CH4by 13X zeolite,Can.J.Chem.Eng.90(2012)730-738.
    [47]A.L.Myers,J.M.Prausnitz,Thermodynamics of mixed-gas adsorption,AICHE J.11(1965)121-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700