滤波对8字腔掺铒光纤激光器锁模运转的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of spectral filtering on mode-locking operation of figure-eight Er-doped fiber laser
  • 作者:石俊凯 ; 王国名 ; 黎尧 ; 高书苑 ; 刘立拓 ; 周维虎
  • 英文作者:Shi Jun-Kai;Wang Guo-Ming;Li Yao;Gao Shu-Yuan;Liu Li-Tuo;Zhou Wei-Hu;Laboratory of Laser Measurement Technology, Academy of Opto-Electronics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:8字腔锁模激光器 ; 损耗非对称 ; 非线性光学环镜 ; 光谱滤波
  • 英文关键词:figure-eight mode locked laser;;loss-imbalance;;nonlinear optical loop mirror;;spectral filtering
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院光电研究院激光测量技术研究室;中国科学院大学;
  • 出版日期:2019-03-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61475162,61575105);; 中国科学院前沿科学重点研究计划(批准号:QYZDY-SSW-JSC008);中国科学院国际合作局对外合作重点项目(批准号:181811KYSB20160029)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906015
  • 页数:7
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:122-128
摘要
构建了基于损耗非对称非线性光学环镜的8字腔掺铒光纤锁模激光器,并讨论了腔内滤波带宽对腔内脉冲演化和激光器输出特性的影响.在非线性光学环镜中引入双向输出耦合器,耦合器和传输光纤位置的不对称产生非互易性,实现锁模运转.利用自制的可调谐滤波器实验研究了滤波带宽对激光器的影响.当滤波带宽为2.1 nm时,腔内脉冲的演化过程受滤波和孤子效应的共同作用,激光器顺时针和逆时针输出脉冲半高全宽分别为583.7fs和2.94 ps.随着滤波带宽增大,滤波的作用逐渐减弱,激光器两路输出脉冲参数逐渐接近,并接近傅里叶变换极限脉冲.当滤波带宽较大时,腔内脉冲的演化过程受增益谱和孤子效应的共同作用,激光器顺时针和逆时针输出脉冲均为变换极限脉冲,半高全宽约为440 fs.通过调节滤波器中心波长实现了对激光器输出脉冲光谱的连续调谐,调节范围大于30 nm.
        Over the last decades, passive mode-locked fiber laser has received considerable attention because of ultrashort pulse, compactness, and low cost. As a saturable absorber, nonlinear optical loop mirror(NOLM) has shown the advantages of high damage threshold, possibility of all-PM fiber implementation, short response time and therefore potentially low intrinsic noise. Spectral filtering plays an important role in NOLM mode locked fiber laser, but the influence of filtering parameters on mode locking operation is rarely reported. In this paper,the influence of filtering bandwidth on mode locking operation and on output pulse characteristics are experimentally investigated. A 2 x 2 optical coupler with a splitting ratio of 10 : 90 is introduced at one end of fiber loop to form a loss-imbalanced NOLM, and extracts 90% of intracavity pulse energy as outputs. With this architecture, an all polarization-maintaining figure-8 Er-doped fiber ultrafast laser is achieved. A home-made bandwidth and wavelength tunable bandpass filter is utilized in the cavity, and the filtering bandwidth is defined by 10 dB bandwidth. The clockwise and counter-clockwise mode locked output power are 8.4 mW and8.6 mW, respectively, with a repetition rate of 2.734 MHz. With a spectral bandwidth of 2.1 nm, the intracavity pulse is shaped by spectral filtering and soliton effect. The 3 dB bandwidth of the clockwise and counterclockwise mode locked output pulse are 10.1 nm and 1.8 nm, and the values of corresponding full width at half maximum(FWHM) of the direct outputs are 583.7 fs and 2.94 ps, respectively. As the filtering bandwidth increases, the role of filter in spectral shaping weakens, and the parameters of two output pulses become close.When spectral bandwidth is larger than 7.3 nm, the intracavity pulse is shaped by gain spectrum and soliton effect. Both of the clockwise and counter-clockwise output pulses become the transform-limited pulses with almost the same FWHMs of 440 fs. Besides, the wavelength of the figure-8 fiber laser can be adjusted in a range larger than 30 nm by modulating the wavelength of the filter. The tunable mode-locked fiber laser has great potential applications in various application fields.
引文
[1] Shi J K, Ji R Y, Li Y, Liu Y, Zhou W H 2017 Acta Phys.Sin.66 134203(in Chinese)[石俊凯,纪荣祎,黎尧,刘娅,周维虎2017物理学报66 134203]
    [2] Zhu Z W, Liu Y, Zhang W C, Luo D P, Wang C, Zhou L,Deng Z J, Li W X 2018 IEEE Photo. Tech. Lett. 30 1139
    [3] Wang S S, Pan Y Z, Gao R X, Zhu X F, Su X H, Qu S L2013 Acta Phys.Sin. 62 024209(in Chinese)[王莎莎,潘玉寨,高仁喜,祝秀芬,苏晓慧,曲士良2013物理学报62 024209]
    [4] Khegai A, Melkumov M, Firstov S, Riumkin K, Gladush Y,Alyshev S, Lobanov A, Khopin V, Afanasiev F, Nasibulin A,Dianov E 2018 Opt. Express 26 23911
    [5] Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L,Balakrishnan K, Norwood R A, Peyghambarian N 2016 IEEE Photo. Tech. Lett. 28 7
    [6] Boguslawski J, Sotor J, Sobon G, Kozins ki R, Lib rant K,Aksienionek M, Lipinska L, Abramski K M 2015 Photon. Res.3 119
    [7] Li J, Zhao Y F, Chen Q Y, Niu K D, Sun R Y, Zhang H N2017 IEEE Photon. J. 9 1506707
    [8] Wang J T, Jiang Z K,Chen H, Li J R, Yin J D, Wang J Z,He T C, Yan P G, Ruan S C 2018 Photon. Res. 6 535
    [9] Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2011 Acta Phys.Sin. 61 044206(in Chinese)[张大鹏,胡明列,谢辰,柴路,王清月2011物理学报61 044206]
    [10] Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210(in Chinese)[刘欢,巩马理,曹士英,林百科,方占军2015物理学报64 114210]
    [11] Liu Z W, Ziegler Z M, Wright L G, Wise F W 2017 Optica 4649
    [12] Sidorenko P, Fu W, Wright L G, Olivier M, Wise F W 2018Opt. Lett. 43 2672
    [13] Doran N J, Wood D 1988 Opt. Lett. 13 56
    [14] Zhao L M, Bartnik A C, Tai Q Q, Wise F W 2013 Opt. Lett.38 1942
    [15] Szczepanek J, Kardas T M, Michalska M, Radzewicz C,Stepanenko Y 2015 Opt. Lett. 40 3500
    [16] Fermann M E, Haberl F, Hofer M, Hochreiter H 1990 Opt.Lett. 15 752
    [17] Krzempek K, Sotor J, Abramski K 2016 Opt. Lett. 41 4995
    [18] Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B,Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428
    [19] Seong N H, Kim D Y 2002 IEEE Photo. Tech. Lett. 14 459
    [20] Hao Q, Chen F H, Yang K W, Zhu X Y, Zhang Q S, Zeng H P 2016 IEEE Photo. Tech. Lett. 28 87
    [21] Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y, Zhou W H 2018 Chin. Opt. Lett. 16 121404
    [22] Jiang T X, Cui Y F, Lu P, Li C, Wang A M, Zhang Z G 2016IEEE Photo. Tech. Lett. 28 1786
    [23] Hansel W, Hoogland H, Giunta M, Schmid S, Steinmetz T,Doubek R, Mayer P, Dobner S, Cleff C, Fischer M,Holzwarth R 2017 Appl. Phys. B 123 40
    [24] Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y, Hu M L 2018 Opt. Lett. 43 2848
    [25] Dianov E M, Karasik A Y, Mamyshev P V, Prokhorov A M,Serkin V N, Stelmakh M F, Fomichev A A 1985 JETP Lett.41 294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700