生物炭强化模拟废水中高浓度苯酚的微生物降解
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biochar enhances microbial degradation of high concentration phenol in simulated wastewater
  • 作者:肖冬林 ; 赵玲 ; 曹心德 ; 刘阳 ; 于晓娟
  • 英文作者:XIAO Donglin;ZHAO Ling;CAO Xinde;LIU Yang;YU Xiaojuan;School of Environmental Science and Engineering, Shanghai Jiao Tong University;
  • 关键词:花生壳生物炭 ; 苯酚微生物降解 ; 生物炭碱性 ; 吸附 ; 载体 ; 海藻酸钙凝胶固定
  • 英文关键词:peanut shell biochar;;microbial degradation of phenol;;biochar′s alkalinity;;adsorption;;carrier;;gel fixation
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:上海交通大学环境科学与工程学院;
  • 出版日期:2019-01-16 15:46
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金面上项目(No.41877110,21577087);; 国家水体污染控制与治理科技重大专项(No.2017ZX07204002-03,2017ZX07202005-005)
  • 语种:中文;
  • 页:HJXX201907004
  • 页数:9
  • CN:07
  • ISSN:11-1843/X
  • 分类号:33-41
摘要
采用花生壳生物质废物分别在350、550和750℃条件下限氧热解制备生物炭,之后加入到苯酚污染模拟废水中,验证其强化苯酚微生物降解的效果.结果表明,未加生物炭的系统中,苯酚浓度过低(≤110 mg·L~(-1))不能使菌体达到最大浓度,苯酚浓度过高(≥420 mg·L~(-1))则会抑制菌体生长,降解率仅为43.2%,且停滞期长.添加生物炭后,苯酚去除率大幅度提高,在6~16 h时微生物进入对数生长期,苯酚浓度快速降低.2、4和6 g·L~(-1)的生物炭添加量均可使苯酚在16 h内被完全去除,高添加量的生物炭能吸附39.3%的苯酚,降低其对微生物的毒性抑制.550℃热解温度制备的生物炭取得了最好的强化效果,其pH缓冲作用可中和苯酚降解产生的酸性物质,而750℃热解温度制备的生物炭由于pH过高而使菌体难以存活.生物炭在相对低苯酚浓度下(600、800 mg·L~(-1))可显著提高其去除率,分别从29.6%、24.5%升至46.9%、36.9%.而对于初始苯酚浓度高达1000 mg·L~(-1)以上的系统,则需要海藻酸钙凝胶固定菌体到生物炭才能获得较高的降解率.
        Peanut shell waste was pyrolyzed at 350 ℃, 550 ℃ and 750 ℃ under oxygen-starved condition to produce biochar, which was subsequently used as a support for bacterial growth to facilitate phenol degradation. Without biochar, bacteria did not grow well in the presence of phenol at low concentration(≤110 mg·L~(-1)), while their growth was inhibited at higher concentration(≥420 mg·L~(-1)) of phenol, with a prolonged lag phase(about 4 hours) and a noticeable decreased phenol removal efficiency of 43.2%. With biochar, the phenol removal efficiency remarkably improved and the lag phase shortened to 6~16 hours. Phenol was 100% removed within 16 h with biochar dose of 2、4和6 g·L~(-1). High biochar dose adsorbed 39.3% of phenol and thus mitigated phenol toxicity to bacteria. Biochar pyrolyzed at 550 ℃ achieved the greatest phenol removal, possibly resulting from its buffering capability against pH drop due to the accumulation of acidic intermediates during phenol degradation. However, biochar pyrolyzed at 750 ℃ completely inhibited bacterial growth due to its extremely alkaline pH. Biochar substantially increased the efficiency of phenol removal from 29.6% to 46.9% at initial concentration of 600 mg·L~(-1) and from 24.5% to 36.9% at initial concentration of 800 mg·L~(-1), respectively. However, to obtain phenol removal with initial concentration >1000 mg·L~(-1), enhanced bacterial immobilization by calcium alginate gel would be essential for ideal degradation efficiency.
引文
Banerjee A,Ghoshal A K.2011.Phenol degradation performance by isolated Bacillus cereus immobilized in alginate[J].International Biodeterioration & Biodegradation,65(7):1052-1060
    Braadbaart F,Poole I.2008.Morphological,chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts[J].Journal of Archaeological Science,35(9):2434-2445
    Cassidy M B,Lee H,Trevors J T.1996.Environmental applications of immobilized microbial cells:A review[J].Journal of Industrial Microbiology,16(2):79-101
    Chen B,Zhou D,Zhu L.2008.Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J].Environmental Science & Technology,42(14):5137-5143
    Chen D Z,Fang J Y,Shao Q,et al.2013.Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber:Mass transfer effect and continuous treatment[J].Bioresource Technology,139:87-93
    陈军.2017.苯酚生物降解开环裂解方式影响因素及其对矿化效率的促进作用[D].西安:西安建筑科技大学
    陈益清.2018.海藻酸-壳聚糖-海藻酸离子取代凝胶[D].天津:天津大学
    程雯,全学军,赵清华,等.2018.O3-Ca(OH)2体系处理苯酚废水[J].化工环保,38(3):282-287
    Du J T,Sun P F,Feng Z,et al.2016.The biosorption capacity of biochar for 4-bromodiphengl ether:study of its kinetics,mechanism,and use as a carrier for immobilized bacteria[J].Environmental Science and Pollution Research,23(4):3770-3780
    Fu H,Wei C,Qu X,et al.2018.Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar:A mechanism of pseudomicelle partition and environmental implications[J].Environmental Pollution,232:402-410
    Gaskin J W,Steiner C,Harris K,et al.2008.Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J].Transactions of the ASABE,51(6):2061-2069
    吉芳英,王攀峤,陈晴空.2018.介孔yolk-shell型Co3O4@mSiO2纳米反应器降解水中的苯酚[J].环境化学,37(7):1599-1608
    Jeffrey M N,Isabel L,Baoshan X,et al.2009.Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J].Annals of Environmental Science,3:195-206
    Lehmann J,Joseph S.2015.Biochar for Environmental Management:Science,Technology and Implementation[M].London:Routledge
    Li J,Cao L,Yuan Y,et al.2018.Comparative study for microcystin-LR sorption onto biochars produced from various plant-and animal-wastes at different pyrolysis temperatures:Influencing mechanisms of biochar properties[J].Bioresource Technology,247:794-803
    李岩.2014.好氧共代谢降解地下水和土壤中三氯乙烯的研究[D].天津:南开大学
    刘亮.2015.生物炭对土壤微生物及其强化修复多环芳烃污染的影响与机理研究[D].上海:上海交通大学
    Ni N,Wang F,Song Y,et al.2018.Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil:Degradation stimulation vs immobilization[J].Chemosphere,196:288-296
    Nuhoglu A,Yalcin B.2005.Modelling of phenol removal in a batch reactor[J].Process Biochemistry,40(3):1233-1239
    Pietikainen J,Kiikkila O,Fritze H.2000.Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J].Oikos,89(2):231-242
    Santos P M,Roma V,Benndorf D,et al.2007.Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp M1 revealed by quantitative proteomics[J].Omics-a Journal of Integrative Biology,11(3):233-251
    师永健,张耀斌,全燮,等.2013.移动床生物膜反应器用于苯酚废水处理的性能研究[J].环境科学学报,33(1):30-35
    Sigmund G,Poyntner C,Pinar G,et al.2018.Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils[J].Journal of Hazardous Materials,345:107-113
    Song S H,Choi S S,Park K,et al.2005.Novel hybrid immobilization of microorganisms and its applications to biological denitrification[J].Enzyme and Microbial Technology,37(6):567-573
    Sun K,Gao B,Ro K S,et al.2012.Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J].Environmental Pollution,163:167-173
    Tsechansky L,Graber E R.2014.Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration[J].Carbon,66:730-733
    魏霞,周俊利,谢柳,等.2016.苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究[J].环境科学学报,36(9):3193-3199
    吴彦霞,赵春林,梁海龙,等.2017.类Fenton催化剂处理苯酚废水的研究[J].环境科学与技术,40(S2):126-130
    Xiao X,Chen B.2017.A direct observation of the fine aromatic clusters and molecular structures of biochars[J].Environmental Science & Technology,51(10):5473-5482
    Xiong B,Zhang Y,Hou Y,et al.2017.Enhanced biodegradation of PAHs in historically contaminated soil by M.gilvum inoculated biochar[J].Chemosphere,182:316-324
    Xu X,Zhao Y,Sima J,et al.2017.Indispensable role of biochar-inherent mineral constituents in its environmental applications:A review[J].Bioresource Technology,241:887-899
    Yuan J H,Xu R K,Zhang H.2011.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].Bioresource Technology,102(3):3488-3497
    张海涛,刘文斌,杨海君,等.2016.一株耐盐高效苯酚降解菌的筛选、鉴定、响应面法优化与降酚动力学研究[J].环境科学学报,36(9):3200-3207
    Zhang K,Sun P,Faye M C A S,et al.2018a.Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J].Carbon,130:730-740
    Zhang P,Sun H,Ren C,et al.2018b.Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption[J].Environmental Pollution,234:812-820
    Zhao L,Cao X,Masek O,et al.2013a.Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J].Journal of Hazardous Materials,256:1-9
    Zhao L,Cao X,Wang Q,et al.2013b.Mineral constituents profile of biochar derived from diversified waste biomasses:implications for agricultural applications[J].Journal of Environmental Quality,42(2):545-552
    Zhao L,Zheng W,Cao X.2014.Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure[J].Chemical Engineering Journal,250:240-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700