水下直升机运动稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical analysis of motion stability of an underwater helicopter
  • 作者:陈振纬 ; 姜勇 ; 黄豪彩 ; 俞宙 ; 严宁民 ; 苏杭 ; 陈鹰
  • 英文作者:CHEN Zhen-wei;JIANG Yong;HUANG Hao-cai;YU Chou;YAN Ning-min;SU Hang;CHEN Ying;Ocean College, Zhejiang University;
  • 关键词:自主式潜水器(AUV) ; 水下直升机 ; 计算流体力学 ; 运动稳定性 ; 操纵性
  • 英文关键词:autonomous underwater vehicle(AUV);;underwater helicopter;;computational fluid dynamic(CFD);;motion stability;;maneuverability
  • 中文刊名:CBLX
  • 英文刊名:Journal of Ship Mechanics
  • 机构:浙江大学海洋学院;
  • 出版日期:2019-02-15
  • 出版单位:船舶力学
  • 年:2019
  • 期:v.23;No.184
  • 基金:国家重点研发计划资助(2017YFC0306100);; 国家自然科学青年基金项目资助(51409230)
  • 语种:中文;
  • 页:CBLX201902004
  • 页数:11
  • CN:02
  • ISSN:32-1468/U
  • 分类号:30-40
摘要
文章分析一种新型超机动飞碟形的自主式潜水器—水下直升机的运动稳定性,以实现其在海底复杂的作业任务。采用AYASYS-CFX计算流体力学的仿真模拟技术,分析飞碟形的水下直升机在水平面的机动性和垂直面的运动稳定性等水动力关键技术问题。采用多种数值水池模拟的方法,包括直(斜)航运动和圆池旋臂运动等模拟方法,以计算水下直升机的水动力的稳定性导数、水动力(矩)、随攻角变化的压力中心和阻升比等。在设计航速1 kn的情况下,采用Routh线性水动力导数组成的运动稳定性数学模型,分析其水平及垂直面上的运动稳定性。计算结果说明,水下直升机在水平面上回转运动具有战术直径接近零的超机动能力,同时,在垂直面上具有优于传统鱼雷形潜水器的运动稳定性。
        The motion stability of an underwater helicopter, a kind of dish shaped autonomous underwater vehicle with the better maneuverability, is analyzed to accomplish complex tasks under the sea. The CFD simulation technique of ANSYS-CFX is employed to analyze the maneuverability and motion stability of the underwater helicopter in the horizontal and the vertical planes, including direct and oblique motion simulation, rotating arm basin simulation and estimated hydrodynamic center of pressure and drag/lift ratio with the change of AOA. In the low velocity condition within design speed of 1 knot, motion stability of the underwater helicopter in the horizontal and the vertical planes is analyzed by mathematical model with estimated linear hydrodynamic derivatives. The simulation results indicate that the underwater helicopter has strong maneuverability with tactical diameter close to zero in the horizontal turning test, meanwhile, motion stability in the vertical plane is better than conventional torpedo shaped AUVs.
引文
[1]Xie S,Li Q,Wu P,Luo J,Li F,Gu J.Hydrodynamic coefficients identification and experimental investigation for an underwater vehicle[J].Sensors&Transducers,2014,164(2):288-294.
    [2]Prestero T.Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[J].Massachusetts Institute of Technology,2001.
    [3]Azarsina F,Williams C D.Manoeuvring simulation of the MUN Explorer AUV based on the empirical hydrodynamics of axis-symmetric bare hulls[J].Applied Ocean Research,2010,32(4):443-453.
    [4]Hu Z,Lin Y.Computing the hydrodynamic coefficients of underwater vehicles based on added momentum sources[C].International Offshore and Polar Engineering Conference,2008.
    [5]Phillips A,Furlong M,Turnock S R.The use of computational fluid dynamics to determine the dynamic stability of an autonomous underwater vehicle[C].Nutts,2007.
    [6]Kinsey J C,Yoerger D R,Jakuba M V,Camilli R.Assessing the deepwater horizon oil spill with the sentry autonomous underwater vehicle[C].International Conference on Intelligent Robots and Systems.IEEE,2011:261-267.
    [7]Yi Ruiwen,Hu Zhiqiang,Lin Yang,Gu Haitao,Ji Daxiong,Liu Jian,Wang Chao.Maneuverability design and analysis of an autonomous underwater vehicle for deep-sea hydrothermal plume survey[C]//2013 OCEANS.San Diego,2013:1-5.
    [8]Vaz G,Toxopeus S L,Holmes S.Calculation of manoeuvring forces on submarines using two viscous-flow solvers[C].International Conference on Ocean,Offshore and Arctic Engineering,2010:621-633.
    [9]Gerber A G,Godine P G,Dajka S.Software design document for a six DOF unsteady simulation capability in ANSYS-CFX[R].Report Number:DRDC-ATLANTIC-CR-2007-020,Contractor Report,2007.
    [10]Minnick L M.A parametric model for predicting submarine dynamic stability in early stage design[D].Master’s Thesis,Virginia Polytechnic Institute and State University,2006.
    [11]Bettle M C,Gerber A G,Watt G D.Unsteady analysis of the six DOF motion of a buoyantly rising submarine[J].Computers&Fluids,2009,38(9):1833-1849.
    [12]Fossen T I.Marine control system,guidance,navigation and control of ships,rigs and underwater[M].1st ed.Trondheim,Norway:Marine Cybernetics,2002.
    [13]盛振邦,刘应中.船舶原理[M].上海:上海交通大学出版社,2004.Sheng Z B,Liu Y Z.Principle of ship[M].Shanghai:Shanghai Jiao Tong University Press,2004.
    [14]Phillips A B,Turnock S R,Furlong M.The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles[J].Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment,2010,224(M4):1-16.
    [15]张新曙,缪国平,黄国梁,尤云祥.碟形潜水器水动力性能研究[J].上海交通大学学报,2003,37(8):1186-1188.Zhang X S,Miu G P,Huang G L,Yu Y X.Hydrodynamic characteristics of a dish-shaped underwater vehicle[J].Journal of Shanghai Jiaotong University,2003,37(8):1186-1188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700