熔融聚合氨基酸的体外生物活性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In vitro Bioactivity of Poly(amino acids) Synthesized by Melting Polycondensation
  • 作者:樊晓霞 ; 严永刚
  • 英文作者:FAN Xiao-xia;YAN Yong-gang;Medical College,Yan'an University;College of Physical Science and Technology,Sichuan University;
  • 关键词:六元聚氨基酸 ; 四元聚氨基酸 ; 聚乙烯 ; 聚酰胺 ; 体外生物活性
  • 英文关键词:hexa-poly(amino acids);;tetra-poly(amino acids);;polyethylene;;polyamide;;in vitro bioactivity
  • 中文刊名:GNGF
  • 英文刊名:Journal of Functional Polymers
  • 机构:延安大学医学院;四川大学物理科学与技术学院;
  • 出版日期:2018-05-25
  • 出版单位:功能高分子学报
  • 年:2018
  • 期:v.31
  • 基金:延安大学博士科研启动项目(YDBK2016-09);; 四川省科技计划项目(2014GZX0010)
  • 语种:中文;
  • 页:GNGF201803011
  • 页数:6
  • CN:03
  • ISSN:31-1633/O6
  • 分类号:99-104
摘要
通过熔融缩聚的方法制备了以6-氨基己酸为主链的六元和四元氨基酸聚合物。采用傅里叶转换红外光谱(FT-IR)、X射线衍射(XRD)、差示扫描量热(DSC)、热重(TG)等分析方法对合成的两种氨基酸聚合物进行了理化性能表征。将氨基酸聚合物、聚酰胺和聚乙烯分别浸泡于模拟体液(SBF)中5d后,采用扫描电子显微镜(SEM)和X射线能谱(EDS)仪对样品的体外生物活性进行表征。结果表明:六元和四元氨基酸聚合物均为酰胺键结构,是半结晶型聚合物,具有较好的热稳定性、可加工性和良好的体外生物活性,它们的Ca和P元素的质量分数比值分别为2.58和2.94,而聚酰胺和聚乙烯无体外生物活性。
        The hexa-poly(amino acids)and tetra-poly(amino acids)based on 6-aminohexanoic acid were synthesized by in-situ melting polycondensation.In vitro bioactivity of hexa-poly(amino acids)and tetrapoly(amino acids)were characterized in comparison with polyamide and polyethylene.Fourier Transform Infrared Spectoscopy(FT-IR)、X-ray Diffraction(XRD)、Differential Scanning Calorimetry(DSC)and Thermal Gravity(TG)analysis of hexa-poly(amino acids)and tetra-poly(amino acids)were characterized for evaluating their chemical features.Scanning Electron Microscopy(SEM)and Energy-Dispersive X-ray Spectroscopy(EDS)of hexa-poly(amino acids)、tetra-poly(amino acids)、polyamide and polyethylene were tested after soaking into simulated body fluid(SBF)for 5 dfor assessing apatite forming in their surface.Results showed that hexa-poly(amino acids)and tetra-poly(amino acids)possessed amide band were both semi-crystallization structure.Peak crystallization temperatures of hexa-poly(amino acids)and tetrapoly(amino acids)were 159.5 ℃ and 157.6 ℃,respectively.Melting temperature of hexa-poly(amino acids)and tetra-poly(amino acids)were 205.9 ℃and 204.4 ℃,respectively.The total mass loss of tetrapoly(amino acids)and hexa-poly(amino acids)were 98.5% and 98.0% at about 800 ℃,respectively.SEM and EDS results showed that hexa-poly(amino acids)and tetra-poly(amino acids)induced the form of apatite on their surface after soaking into SBF for 5 d,showing good bioactivity.However,polyethylene and polyamide were not bioactive.w(Ca)/w(P)for hexa-poly(amino acids)and tetra-poly(amino acids)were 2.58 and 2.94,respectively.
引文
[1]LI H,YANG L,DONG X,et al.Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid)copolymer for bone tissue regeneration[J].Journal of Materials Science:Materials in Medicine,2014,25(5):1257-1265.
    [2]LI H,YAN Y G,WEI J,et al.Bone substitute biomedical material of multi-(amino acid)copolymer:In vitro degradation and biocompatibility[J].Journal of Materials Science:Materials in Medicine,2011,22(11):2555-2563.
    [3]ZHANG Y F,SHAN W P,LI X D,et al.Bioactivity and cytocompatibility of dicalcium phosphate/poly(amino acid)biocomposites with degradability[J].Applied Surface Science,2012,258(7):2632-2638.
    [4]田晓飞,严永刚,李鸿,等.聚6-氨基己酸-β-丙氨酸的合成及降解行为研究[J].功能材料,2012,43(10):1247-1250.
    [5]严永刚,李鸿,吕国玉,等.含陶瓷成分的复合聚合物骨修复材料及制备方法:中国,200810045885.1[P].2008-08-25.
    [6]LI S,LI H,YAN Y,et al.Influences of degradability,bioactivity,and biocompatibility of the calcium sulfate content on a calcium sulfate/poly(amino acid)biocomposite for orthopedic reconstruction[J].Polymer Composites,2015,37(6):1886-1894.
    [7]WANG J,LI H,FAN X,et al.Bone substitute of poly(amino acid)/β-Ca2SiO4 biocomposite:Degradability and bioactivity[J].Polymer Composites,2016,37(5):1335-1341.
    [8]TORO R D,BETTI V,SPAMPINATO S.Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide)copolymers[J].European Journal of Pharmaceutical Sciences,2004,21(2):161-169.
    [9]HURRELL S,MILROY G E,CAMERON R E.The distribution of water in degrading polyglycolide.PartⅠ:Sample size and drug release[J].Journal of Materials Science:Materials in Medicine,2003,14(5):452-464.
    [10]FAN X,REN H,LUO X,et al.Mechanics,degradability,bioactivity,in vitro and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone[J].Journal of Biomaterials Applications,2016,30(8):1261-1272.
    [11]WANG P,LIU P,FAN X,et al.Controlling the degradation of dicalcium phosphate/calcium sulfate/poly(amino acid)bio-composites for bone regeneration[J].Polymer Composites,2016,DOI:10.002/pc.24049.
    [12]WANG P,LIU P,PENG H,et al.Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly(amino acid)composite for orthopedic tissue engineering in vitro and in vivo[J].Journal of Biomaterials Science:Polymer Edition,2016,27(11):1170-1186.
    [13]ZHAO Z T,SHAN W P,ZHANG Y F,et al.Fabrication and properties of degradable poly(amino acid)/nano hydroxyapatite bioactive composite[J].Journal of Applied Polymer Science,2012,125(4):2502-2509.
    [14]FAN X,REN H,YAN Y,et al.Effects of the surface modification of poly(amino acid)/hydroxyapatite/calcium sulfate biocomposites on the adhesion and proliferation of osteoblast-like cells[J].Journal of Applied Polymer Science,2015,132(33):42427.
    [15]严永刚,李鸿,吕国玉,等.聚合物形式的组织修复材料及制备方法:中国,200810045884.7[P].2008-08-25.
    [16]KOKUBO T.Surface chemistry of bioactive glass-ceramics[J].Journal of Non-crystalline Solids,1990,120(1):138-151.
    [17]KOKUBO T,TAKADAMA H.How useful is SBF in predicting in vivo bone bioactivity[J].Biomaterials,2006,27(15):2907-2915.
    [18]WEI J,HEO S J,KIM D H,et al.Comparison of physical,chemical and cellular responses to nano-and micro-sized calcium silicate/poly(epsilon-caprolactone)bioactive composites[J].Journal of the Royal Society Interface,2008,5(23):617-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700