中介轴承外圈故障动力学建模及仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Modeling and Simulation Analysis on Outer Race Fault of Inter-Shaft Bearing
  • 作者:田晶 ; 王志 ; 张凤玲 ; 艾延廷 ; 周海仑
  • 英文作者:TIAN Jing;WANG Zhi;ZHANG Feng-ling;AI Yan-ting;ZHOU Hai-lun;Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System,Shenyang Aerospace University;
  • 关键词:中介轴承 ; 时变位移激励 ; 外圈故障 ; 动力学建模 ; 径向载荷
  • 英文关键词:Inter-shaft bearing;;Time-varying displacement excitation;;Outer race fault;;Dynamic model;;Radial load
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:沈阳航空航天大学辽宁省航空推进系统先进测试技术重点实验室;
  • 出版日期:2018-11-07 10:27
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家自然科学基金(11702177);; 辽宁省教育厅项目(LN201710)
  • 语种:中文;
  • 页:TJJS201903022
  • 页数:7
  • CN:03
  • ISSN:11-1813/V
  • 分类号:186-192
摘要
为了研究航空发动机中介轴承故障特征,基于Hertz非线性接触理论,建立了一种考虑时变位移激励的4自由度中介轴承外圈故障动力学模型。采用双转子试验台对中介轴承外圈故障进行实验模拟,实验结果和动力学模型数值求解结果一致,验证了所建立模型的准确性。采用动力学模型仿真分析了中介轴承外圈存在缺陷情况的振动响应。研究了中介轴承振动方根幅值、波形因子、脉冲因子、峰值因子和峭度因子随缺陷大小、径向载荷的变化规律。结果表明:随着缺陷尺寸或径向载荷增大,中介轴承振动方根幅值呈增大趋势。脉冲因子、峰值因子和峭度因子等无量纲参数随着缺陷尺寸增加,先增大后减小。随着径向载荷增加,以上三个无量纲参数呈增大趋势。同时,证明方根幅值、脉冲因子、峰值因子和峭度因子等特征参数对中介轴承外圈故障敏感。
        In order to study the fault features of the inter-shaft bearing, a new type of four degree of freedom dynamic model of inter-shaft bearing with outer race fault is established based on the Hertz nonlinear contact theory, which considers time-varying displacement excitation. A dual-rotor test rig is used to simulate the faults of the bearing outer race, and the experimental results are in good agreement with the numerical simulation results,which verifies the accuracy of the model. The dynamic model is used to analyze the vibration response of the bearing when outer race is faulty. The dependences of the vibration amplitude of the square root, shape factor, impulse factor, peak factor and kurtosis factor on the size of defect and radial load have been studied. The results show that the vibration amplitude of the square root of the inter-shaft bearing increases with the increase of the defect size or radial load. The dimensionless parameters such as impulse factor, peak factor and kurtosis factor increase first and then decrease with increasing defect size. With the increase of radial load, the above three dimensionless parameters show an increasing trend. At the same time, it is proved that the characteristic parameters such as the amplitude of the square root, pulse factor, peak factor and kurtosis factor are sensitive to the outer race fault of inter-shaft bearing.
引文
[1]廖明夫,马振国,刘永泉,等.航空发动机中介轴承的故障特征与诊断方法[J].航空动力学报,2013,28(12):2752-2758.
    [2]Mcfadden P D,Smith J D.Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing[J].Journal of Sound&Vibration,1984,96(1):69-82.
    [3]Su Y T,Lin S J.On Initial Fault Detection of a Tapered Roller Bearing:Frequency Domain Analysis[J].Journal of Sound&Vibration,1992,155(1):75-84.
    [4]Su Y T,Lin M H,Lee M S.The Effects of Surface Irregularities on Roller Bearing Vibrations[J].Journal of Sound&Vibration,1993,165(3):455-466.
    [5]Patel V N,Tandon N,Pandey R K.Vibration Studies of Dynamically Loaded Deep Groove Ball Bearings in Presence of Local Defects on Races[J].Procedia Engineering,2013,64(64):1582-1591.
    [6]Patil M S,Mathew J,Rajendrakumar P K,et al.A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated with Ball Bearing[J].International Journal of Mechanical Sciences,2010,52(9):1193-1201.
    [7]王海飞,陈果.含滚动轴承径向游隙的航空发动机整机振动响应特征分析[J].推进技术,2016,37(5):945-959.(WANG Hai-fei,CHEN Guo.Characteristics Analysis of Aero-Engine Whole Vibration Response with Rolling Bearing Radial Clearance[J].Journal of Propulsion Technology,2016,37(5):945-959.)
    [8]Kulkarni P G,Sahasrabudhe A D.A Dynamic Model of Ball Bearing for Simulating Localized Defects on Outer Race Using Cubic Hermite Spline[J].Journal of Mechanical Science and Technology,2014,28(9):3433-3442.
    [9]Niu L,Cao H,Xiong X.Dynamic Modeling and Vibration Response Simulations of Angular Contact Ball Bearings with Ball Defects Considering the Three-Dimensional Motion of Balls[J].Tribology International,2017,109:26-39.
    [10]曹宏瑞,李亚敏,成玮,等.局部损伤滚动轴承建模与转子系统振动仿真[J].振动、测试与诊断,2014,34(3):549-552.
    [11]任国哲,刘振侠,高文君,等.基于拟动力学方法的反转圆柱滚子轴承动力学特性研究[J].推进技术,2016,37(2):354-361.(REN Guo-zhe,LIU Zhenxia,GAO Wen-jun,et al.Research on Dynamic Behaviors of Counter-Rotating Cylindrical Roller Bearing Based on Quasi-Dynamic Method[J].Journal of Propulsion Technology,2016,37(2):354-361.)
    [12]Liu J,Shao Y.A New Dynamic Model for Vibration Analysis of a Ball Bearing Due to a Localized Surface Defect Considering Edge Topographies[J].Nonlinear Dynamics,2015,79(2):1329-1351.
    [13]Harris T A,Park U,Kotzalas M N,et al.Rolling Bearing Analysis[M].Boca Raton:Crc Press,2006.
    [14]Tsuneo S.Journal Bearing Databook[M].Berlin:Springer Verlag,1989.
    [15]王宇楠,邢誉峰.变质量梁的自适应Newmark法[J].北京航空航天大学学报,2014,40(6):829-833.
    [16]田晶,艾延廷,赵明,等.基于峰值保持降采样算法的中介轴承故障声发射数据缩减技术[J].推进技术,2018,39(5):1157-1163.(TIAN Jing,AI Yanting,ZHAO Ming,et al.Acoustic Emission Data Reduction Technique of Inter-Shaft Bearing with Fault Based on Peak Hold down Sample Algorithm[J].Journal of Propulsion Technology,2018,39(5):1157-1163.)
    [17]廖明夫,马振国,邓巍.某型航空发动机中介轴承外环故障振动分析[J].航空动力学报,2011,26(11):2422-2426.
    [18]徐可君,董芳华,秦海勤.内圈带缺陷中介轴承的动力学建模与振动响应分析[J].海军航空工程学院学报,2015,30(1):36-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700