新疆东准噶尔南明水金矿床成矿流体特征:流体包裹体及氢氧同位素证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Ore-forming Fluids of the Nanmingshui Gold Deposit in the East Junggar,Xinjiang: Evidences from Fluid Inclusions and H-O Isotopes
  • 作者:葛战林 ; 章永梅 ; 顾雪祥 ; 陈伟志 ; 徐劲驰 ; 武若晨 ; 黄岗
  • 英文作者:GE Zhanlin;ZHANG Yongmei;GU Xuexiang;CHEN Weizhi;XU Jinchi;WU Ruochen;HUANG Gang;School of Earth Sciences and Resources,China University of Geosciences;No.8 Gold Geological Party of PAP;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;Regional Institute of Shaanxi Bureau of Geological Exploration;
  • 关键词:流体包裹体 ; 氢、氧同位素 ; 流体不混溶 ; 南明水金矿床 ; 新疆
  • 英文关键词:fluid inclusion;;H-O isotope;;fluid immiscibility;;Nanmingshui gold deposit;;Xinjiang
  • 中文刊名:XDDZ
  • 英文刊名:Geoscience
  • 机构:中国地质大学(北京)地球科学与资源学院;武警黄金第八支队;中国地质大学地质过程与矿产资源国家重点实验室;陕西区域地质矿产研究院;
  • 出版日期:2018-10-15
  • 出版单位:现代地质
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金项目(41572062);; 中央返还两权价款资金综合研究项目(Y15-1-LQ04,Y15-1-LQ02);; 中央高校基本科研业务费专项资金项目(2652017226)
  • 语种:中文;
  • 页:XDDZ201805003
  • 页数:15
  • CN:05
  • ISSN:11-2035/P
  • 分类号:28-42
摘要
新疆东准噶尔南明水金矿床位于卡拉麦里成矿带东段,矿体受NW—NWW向韧-脆性断裂控制,赋矿围岩为下石炭统姜巴斯套组的浅变质海相火山碎屑-沉积岩。以流体包裹体和氢、氧同位素为研究手段,查明了矿床成矿流体性质、来源及其演化特征与金成矿的关系。其热液成矿过程可划分早、中、晚3个阶段,石英中原生包裹体主要有CO_2-H_2O包裹体、水溶液包裹体和纯CO_2包裹体3种类型。早阶段石英中以CO_2-H_2O包裹体和纯CO_2包裹体为主,均一温度变化于257~339℃,盐度为0. 4%~2. 2%;中阶段石英中3种类型包裹体均发育,CO_2-H_2O包裹体和水溶液包裹体均一温度为196~361℃,盐度为0. 4%~6. 0%;晚阶段石英中仅见水溶液包裹体,均一温度相对较低,为174~252℃,盐度为1. 4%~3. 2%。由CO_2-H_2O包裹体计算的早、中阶段捕获压力分别为214~371 MPa、236~397MPa,对应的成矿深度分别为8. 1~14. 0 km、8. 9~15. 0 km。成矿流体由早、中阶段的CO_2-H_2O-NaCl±CH_4体系演化至晚阶段贫CO_2的H_2O-NaCl体系,成矿温度和流体密度呈逐渐降低趋势,盐度变化不大。流体包裹体和氢、氧同位素研究表明,主成矿阶段成矿流体主要来源于变质水,CO_2-H_2O-NaCl流体的不混溶是导致Au富集成矿的重要机制,南明水金矿属于中深成造山型金矿床。
        The Nanmingshui gold deposit is located in the eastern part of the Kalamaili metallogenic belt. Its ore-bodies,controlled by the NW—NWW trending ductile-brittle faults,are hosted in epimetamorphic marine volcaniclastic sedimentary rocks of the Lower Carboniferous Jiangbasitao Formation. Based on the studies of fluid inclusions and hydrogen and oxygen isotopic geochemistry,the properties,source and evolution of ore-forming fluids are discussed in this paper. The ore-forming process can be divided into three metallogenic stages including the early,middle and late stages. Three types of fluid inclusions that include CO_2-H_2O,H_2O-NaCl and pure CO_2 inclusions are identified in the quartz of the Nanmingshui gold deposit. The early-stage quartz mainly contains CO_2-H_2O and pure CO_2 inclusions with homogenization temperatures and salinities ranging from 257 ℃to 339 ℃ and 0. 4% to 2. 2%. All three types of inclusions are trapped in the middle( main)-stage quartz. The homogenization temperatures and salinities of CO_2-H_2O and H_2O-NaCl inclusions vary from 196 ℃ to 361 ℃and 0. 4% to 6. 0%. Only H_2O-NaCl inclusions are found in the late stage quartz with relatively lower homogenization temperatures clustering at 174 ℃ to 252 ℃. Meanwhile,the salinities of H_2O-NaCl inclusions vary from 1. 4% to 3. 2%. According to the estimation from CO_2-H_2O inclusions,the minimum trapping pressures for early and middle stages are 214 MPa to 371 MPa and 236 MPa to 397 MPa,respectively,corresponding to the metallogenic depths of 8. 1 km to 14. 0 km and 8. 9 km to 15. 0 km,respectively. The studies of fluid inclusions in different metallogenic stages indicate that the metallogenetic temperatures and fluid densities show a decreasing trend,as the ore-forming fluids are evolved from CO_2-H_2O-NaCl ± CH_4 system in the early and middle stages to H_2O-NaCl system in the late stage. Fluid inclusions and hydrogen and oxygen isotopic studies show that the ore-forming fluids of the main metallogenic stage were dominantly originated from metamorphic water.The immiscibility of CO_2-H_2O-NaCl fluids is an important mechanism that leads to the gold precipitation and enrichment. The genesis of the Nanmingshui gold deposit is a mesozonal to hypozonal orogenic gold deposit.
引文
[1]路彦明,张玉杰,潘懋,等.新疆东准噶尔地区金矿类型、地质特征[J].地球学报,2010,31(3):434-442.
    [2]张栋,路彦明,葛良胜,等.东准噶尔卡拉麦里地区金铜多金属成矿系统和地球动力学[J].地质论评,2015,61(4):797-816.
    [3]程海伟.新疆卡拉麦里成矿带金矿床地质特征及其时空分布[J].新疆有色金属,2014,37(增刊):42-44.
    [4]闫晓兰,李逸凡,刘红涛.新疆卡拉麦里造山型金矿系统[J].新疆地质,2014,32(3):328-333.
    [5]杨富全,吴海.新疆东准噶尔金矿成因类型及地质特征[J].地质找矿论丛,2000,15(1):39-45.
    [6]郭全,薄科武,赵军.新疆卡拉麦里山变质碎屑岩型金矿成矿条件分析[J].西部探矿工程,2007,19(10):164-167.
    [7]路彦明,张栋,范俊杰,等.新疆东准地区成岩、成矿与构造演化时空耦合[J].矿床地质,2008,27(增刊):33-41.
    [8]徐斌.新疆卡拉麦里成矿带金矿构造—岩浆控矿规律及找矿预测研究[D].北京:中国地质大学(北京),2010:30-48.
    [9]聂晓勇,宋谢炎,章文忠,等.新疆东准地区卡拉麦里蛇绿岩带中两类金矿床的可能成因[J].矿床地质,2010,29(增刊):84-91.
    [10]李锦轶,肖序常,汤耀庆,等.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J].地质论评,1990,36(4):305-316.
    [11]蔡土赐.新疆维吾尔自治区岩石地层[M].武汉:中国地质大学出版社,1999:54-61.
    [12]顾雪祥,董连慧,王新利,等.西天山博罗科努铜钼多金属成矿系统与靶区评价[M].北京:地质出版社,2017:1-4.
    [13]赵磊,季建清,徐芹芹,等.新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次[J].岩石学报,2012,28(7):2257-2268.
    [14]李锦轶.新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩石学报,1995,11(增刊):73-84.
    [15]李锦轶,杨天南,李亚萍,等.东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束[J].地质通报,2009,28(12):1817-1826.
    [16]张玉杰,张栋,路彦明,等.新疆东准噶尔卡拉麦里构造带多期变形和金叠加成矿[J].地质与勘探,2013,49(5):797-812.
    [17]张守林,杨自安,傅水兴.新疆卡拉麦里成矿带赋矿岩层-矿化蚀变遥感特征[J].地质与勘探,2001,37(5):41-44.
    [18]董静.新疆卡拉麦里清水泉金铜矿床地球化学特征及成因研究[D].乌鲁木齐:新疆大学,2015:9-13.
    [19]徐春华,纪瑞元,郭文杰,等.韧性剪切带中金成矿地质构造解析方法及找矿预测——以卡拉麦里大断裂带金矿为例[J].河南科学,2015,33(7):1199-1205.
    [20] CLAYTON R N,MAYEDA T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta,1963,27(1):43-52.
    [21] COLEMAN M L,SHEPHERD T J,DURHAM J J,et al. Reduction of water with zinc for hydrogen isotope analysis[J]. Analytical Chemistry,1982,54(6):993-995.
    [22] HALL D L,STERNER S M,BODNAR R J. Freezing point depression of Na Cl-KCl-H2O solutions[J]. Economic Geology,1988,83(1):197-202.
    [23]刘斌,段光贤. Na Cl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [24] ROEDDER E. Fluid Inclusions:Reviews in Mineralogy[M].Washington:Mineralogical Society of America,1984:1-644.
    [25] SHEPHERD T J,RANKIN A H,ALDERTON D H M. A Practical Guide to Fluid Inclusion Studies[M]. Blackie:Chapman Hall,1985:1-239.
    [26] BROWN P E. FLINCOR:a microcomputer program for the reduction and investigation of fluid-inclusion data[J]. American Mineralogist,1989,74(11):1390-1393.
    [27] BROWN P E,LAMB W M. P-V-T properties of fluids in the system H2O±CO2±Na Cl:New graphical presentations and implications for fluid inclusion studies[J]. Geochimica et Cosmochimica Acta,1989,53(6):1209-1221.
    [28] CLAYTON R N,O'NEIL J R,MAYEDA T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research,1972,77(17):3057-3067.
    [29]徐斌,路彦明,顾雪祥,等.新疆卡拉麦里地区金成矿流体和O、H、S同位素地球化学特征[J].地学前缘,2010,17(4):227-240.
    [30]高怀忠,张旺生.东准噶尔强应变构造带成矿系统的特征、成矿流体和热动力条件分析[J].地球科学:中国地质大学学报,2000,25(4):369-374.
    [31] TAYLOR H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology,1974,69(6):843-883.
    [32] SHEPPARD S M F. Characterization and isotopic variations in natural waters[J]. Reviews in Mineralogy and Geochemistry,1986,16(3):165-183.
    [33]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(9):2085-2108.
    [34] LAWRENCE D M,TRELOAR P J,RANKIN A H,et al. A fluid inclusion and stable isotope study at the Loulo Mining District,Mali,West Africa:implications for multifluid sources in the generation of orogenic gold deposits[J]. Economic Geology,2013,108(2):229-257.
    [35]张德会.成矿流体中金的沉淀机理研究述评[J].矿物岩石,1997,17(4):122-130.
    [36] GUHA J,LU H Z,DUBE B,et al. Fluid characteristics of vein and altered wall rock in Archean mesothermal gold deposits[J].Economic Geology,1991,86(3):667-684.
    [37]卢焕章.从包裹体研究探索太古代一些金矿的成矿机理[J].矿物学报,1991,11(4):289-297.
    [38]卢焕章.流体不混溶性和流体包裹体[J].岩石学报,2011,27(5):1253-1261.
    [39]胡芳芳,范宏瑞,沈昆,等.胶东乳山脉状金矿床成矿流体性质与演化[J].岩石学报,2005,21(5):1329-1338.
    [40]顾雪祥,刘丽,董树义,等.山东沂南金铜铁矿床中的液态不混溶作用与成矿:流体包裹体和氢氧同位素证据[J].矿床地质,2010,29(1):43-57.
    [41]周振菊,蒋少涌,秦艳,等.小秦岭文峪金矿床流体包裹体研究及矿床成因[J].岩石学报,2011,27(12):3787-3799.
    [42] REED M H,SPYCHER N F. Boiling,cooling and oxidation in epithermal systems:a numerical modeling approach[J]. Reviews in Economic Geology,1985,2:249-272.
    [43] KLEIN E L,FUZIKAWA K. Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Cararávein-quartz gold deposit,Ipitinga Auriferous District,SE-Guiana Shield,Brazil:implications for orogenic gold mineralization[J]. Ore Geology Reviews,2010,37(1):31-40.
    [44] BENNING L G,SEWARD T M. Hydrosulphide complexing of Au(I)in hydrothermal solutions from 150-400°C and 500-1500bar[J]. Geochimica et Cosmochimica Acta,1996,60(11):1849-1871.
    [45]卢焕章. CO2流体与金矿化:流体包裹体的证据[J].地球化学,2008,37(4):321-328.
    [46]李保华,顾雪祥,李黎,等. CO2-H2O流体不混溶对Au溶解度的影响——以贵州省贞丰县水银洞金矿床为例[J].地质通报,2011,30(5):766-772.
    [47]吴程赟,顾雪祥,刘丽,等.贵州丫他卡林型金矿床流体包裹体特征及其成矿意义[J].现代地质,2012,26(2):277-285.
    [48]李葆华,李雯霞,顾雪祥,等.四川丹巴燕子沟金矿床成矿流体不混溶的流体包裹体证据[J].地学前缘,2014,21(5):41-49.
    [49]陈衍景,李晶,PIRAJNO F,等.东秦岭上宫金矿流体成矿作用:矿床地质和包裹体研究[J].矿物岩石,2004,24(3):1-12.
    [50]陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006,33(6):1181-1196.
    [51]蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭:两类不同构造环境中的造山型金矿省[J].岩石学报,2009,25(11):2727-2738.
    [52]杨利亚,杨立强,袁万明,等.造山型金矿成矿流体来源与演化的氢-氧同位素示踪:夹皮沟金矿带例析[J].岩石学报,2013,29(11):4025-4035.
    [53]邱正杰,范宏瑞,丛培章,等.造山型金矿床成矿过程研究进展[J].矿床地质,2015,34(1):21-38.
    [54]曾威,段明,万多,等.河南银洞坡金矿成矿流体与矿床成因研究[J].现代地质,2016,30(4):781-791.
    [55] GROVES D I,GOLDFARB R J,GEBRE-MARIAM M,et al.Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews,1998,13(1):7-27.
    [56] GROVES D I,GOLDFARB R J,ROBERT F,et al. Gold deposits in metamorphic belts:overview of current understanding,outstanding problems,future research,and exploration significance[J]. Economic Geology,2003,98(1):1-29.
    [57] KERRICH R,GOLDFARB R J,GROVES D I,et al. The characteristics,origins,and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China(Series D),2000,43(Supp):1-68.
    (1)武警黄金第八支队.新疆东准噶尔地区构造-岩浆作用与多金属成矿关系调查报告(内部资料). 2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700