西非深水浊积复合水道储层连通模式表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of Connectivity Models of Deepwater Turbidite Compound Channels in West Africa
  • 作者:陈筱 ; 卜范青 ; 王昊 ; 陈国宁 ; 张旭
  • 英文作者:CHEN Xiao;BU Fanqing;WANG Hao;CHEN Guoning;ZHANG Xu;CNOOC Research Institute Co.Ltd.;
  • 关键词:深水浊积 ; 复合水道 ; 连通模式 ; 储层构型演化 ; 尼日尔三角洲
  • 英文关键词:deepwater turbidites;;compound channels;;connectivity models;;reservoir configuration evolution;;Niger Delta
  • 中文刊名:XNSY
  • 英文刊名:Journal of Southwest Petroleum University(Science & Technology Edition)
  • 机构:中海油研究总院有限责任公司;
  • 出版日期:2018-05-10 16:51
  • 出版单位:西南石油大学学报(自然科学版)
  • 年:2018
  • 期:v.40;No.191
  • 语种:中文;
  • 页:XNSY201806004
  • 页数:12
  • CN:06
  • ISSN:51-1718/TE
  • 分类号:39-50
摘要
采用储层表征、构型刻画相结合的方法综合分析K油田A油组水道体系内部连通特征。基于岩芯、测井资料,分析深水浊积扇岩芯特征及测井响应特征;以单井相划分为基础,结合地震反演和平面属性特征,刻画浊积水道沉积相空间展布。采用井震结合的方法,分别从垂向、侧向对复合水道的空间几何关系进行剖析,归纳出4类15种构型样式,并总结出深水浊积复合水道构型演化规律。研究表明,深水浊积水道包含主水道、砂质天然堤两类亚相。主水道储层物性、均质性优于天然堤。复合水道在垂向上按照接触关系分为孤立式、叠加式、切叠式3类,在侧向上按照搭接程度可分为雁列孤立式、雁列叠加式和雁列切叠式,同时按摆动叠置关系可分为摆动孤立式、摆动叠加式和摆动切叠式。深水复合水道由近源至远源划分为5个区域,由近及远水动力强度经历了由弱增强再次减弱的过程;水道构型在近源以垂向孤立式为主,在中部随水动力增强,切叠、叠加样式增多,远源呈现摆动孤立式;由此水道连通性呈现从弱至强再减弱趋势。深水浊积复合水道具有多种构型样式,连通关系较为复杂,水道构型及连通性随水动力变化呈现规律性演化。
        The aim of this study was to comprehensively analyze the internal connectivity characteristics of the water channel systems of the A oil group in the K Oilfield using reservoir characterization and configuration descriptions. The deepwater turbidite fan sedimentary facies were described based on core and well log data. The lateral distribution of turbidite channel sedimentary facies were identified based on single-well phase and seismic plane attribute characteristics. With well log and seismic data, the spatial geometric relationships of the compound channels were analyzed, and consequently, 4 types and 15 configurations were classified in the A oil group. Finally, the evolution of the configuration deepwater turbidite compound channels were summarized. The re sultes show that the deepwater turbidite channels were dominated by two sub-facies, inlcuding main channels and sandy levees. The physical properties and homogeneity of main channels are superior to the levees.Vertically, compound channels can be divided into three types, e.g., isolated, stacked and layered, while laterally, it can be divided into three types, including echelon isolated, echelon stacked, and echelon layered. In addition, the swaying stacking relationship can be summarized as swaying isolated, swaying stacked, and swaying layered. Deepwater compound channels are categorized into 5 sections with their increasing distance to the source, where hydrodynamic strength decreases after increases.The near-source channel configuration is dominated by vertical isolation, increasing hydrodynamic enhancement in the middle section resulted in stacking and layering, while swaying isolation presents at far-source section. The channel connectivity generally follows a trending of poor, good and poor again as a function of hydrodynamic forces and configuration. Deepwater turbidite compound channels are characterized by configuration patterns and complex connectivity. Channel configuration and connectivity vary regularly with hydrodynamic changes.
引文
[1]吴胜和,翟瑞,李宇鹏.地下储层构型表征:现状与展望[J].地学前缘,2012, 19(2):15-23.WU Shenghe, ZHA-Rui,LI Yupeng. Subsurface reservoir architecture characterization:Current status and prospects[J]. Earth Science Frontiers, 2012,19(2):15-23.
    [2]赵小庆,鲍志东,刘宗飞,等.河控三角洲水下分流河道砂体储集层构型精细分析——以扶余油田探51区块为例[J].石油勘探与开发,2013, 40(2):181-187.doi:10.11698/PED.2013.02.06ZHAO Xiaoqing, BAO Zhidong, LIU Zongfei, et al. An in-depth analysis of reservoir architecture of underwater distributary channel sand bodies in a river dominated delta:A case study of T51 Block, Fuyu Oilfield[J]. Petroleum Exploration and Development.2013,40(2):181-187. doi:10.11698/PED.2013.02.06
    [3]周银邦,吴胜和,计秉玉,等.曲流河储层构型表征研究进展[J].地球科学进展,2011.26(7):695-702.ZHOU Yinbang, WU Shenghe, JI Bingyu, et al. Research progress on the characterization of fluvial reservoir architecture[J]. Advances in Earth Science, 2011, 26(7):695-702.
    [4]伊振林,吴胜和,杜庆龙,等.冲积扇储层构型精细解剖方法——以克拉玛依油田六中区下克拉玛依组为例[J].吉林大学学报(地球科学版),2010, 40(4):939-946. doi:10.3969/j.issn.1671-5888.2010.04.024YI Zhenlin, WU Shenghe, DU Qinglong, et al. An accurate anatomizing method for structure of reservoir of alluvial fan:A case study on Lower Karamay Formation,Liuzhong Area, Karamay Oilfield[J]. Journal of Jilin University(Earth Science Edition), 2010,40(4):939-946. doi:10.3969/j.issn.1671-5888.2010.04.024
    [5]刘钰铭,侯加根,王连敏,等.辫状河储层构型分析[J].中国石油大学学报(自然科学版),2009.33(1):7-11.doi:10.3321/j.issn:1673-5005.2009.01.002LIU Yuming, HOU Jiagen, WANG Lianmin, et al. Architecture analysis of braided river reservoir[J]. Journal of China University of Petroleum, 2009, 33(1):7-11. doi:10.3321/j.issn:1673-5005.2009.01.002
    [6]渠芳,陈清华,连承波.河流相储层构型及其对油水分布的控制[J].中国石油大学学报(自然科学版),2008. 32(3):14-18. doi:10.3321/j.issn:1673-5005.2008.03.003QU Fang, CHEN Qinghua, LIAN Chengbo. Fluvial facies reservoir architecture and its control over the distribution of oil and water[J]. Journal of China University of Petroleum, 2008.32(3):14-18. doi:10.3321/j.issn:1673-5005.-2008.03.003
    [7]岳大力,吴胜和,刘建民.曲流河点坝地下储层构型精细解剖方法[J].石油学报,2007, 28(4):99-103. doi:10.7623/syxb200704020YUE Dali, WU Shenghe, LIU Jianmin. An accurate menthod for anatomizing architecuture of subsurface reservoir in point bar of meandering river[J]. Acta Petrolei Sinica,2007.28(4):99-103. doi:10.7623/syxb200704020
    [8]何文祥,吴胜和,唐义疆,等.河口坝砂体构型精细解剖[J].石油勘探与开发,2005, 32(5):42-46. doi:10.3321/j.issn:1000-0747.2005.05.009HE Wenxiang, WU Shenghe, TANG Yijiang, et al. Detailed architecture analyses of debouch bar in Shengtuo Oilfield, Jiyang Depression[J]. Petroleum Exploration and Development, 2005, 32(5):42-46. doi:10.3321/j.issn:-1000-0747.2005.05.009
    [9]何文祥,吴胜和,唐义疆,等.地下点坝砂体内部构型分析——以孤岛油田为例[J].矿物岩石,2005.25(2):81-86. doi:10.3969/j.issn.1001-6872.2005.02.014HE Wenxiang, WU Shenghe, TANG Yijiang, et al. The architecture analysis of the underground point bar:Taking Gudao Oilfield as an example[J]. Jmineral Petrol, 2005,25(2):81-86. doi:10.3969/j.issn.1001-6872.2005.02.014
    [10]赵晓明,吴胜和,刘丽.尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J].石油学报,2012, 33(6):1049-1058. doi:10.7623/syxb201206018ZHAO Xiaoming, WU Shenghe, LIU Li. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo Oilfield, Niger Delta Basin[J]. Acta Petrolei Sinica, 2012, 33(6):1049-1058.doi:10.7623/syxb201206018
    [11]吕明,王颖,陈莹.尼日利亚深水区海底扇沉积模式成因探讨及勘探意义[J].中国海上油气,2008, 20(4):275-282. doi:10.3969/j.issn.1673-1506.2008.04.016L(U|¨)Ming, WANG Ying, CHEN Ying. A discussion on origins of submarine fan deposition model and its exploration significance in Nigeria deep-water area[J]. China Offshore Oil and Gas, 2008, 20(4):275-282. doi:10.3969/j.issn.-1673-1506.2008.04.016
    [12]刘喜玲,刘君荣.深水沉积及海底扇相模式研究进展[J].长江大学学报(自科版),2013, 10(14):30-33.doi:10.16772/j.cnki.1673-1409.2013.14.006LIU Xiling, LIU Junrong. The research progress on sedimentary mode of deepwater deposition and submarine fan[J]. Journal of Yangtze University(Nat Sci Edit), 2013,10(14):30-33. doi:10.16772/j.cnki.1673-1409.2013.14.-006
    [13]赵晓明,吴胜和,岳大力,等.西非某油田深水海底扇岩石相类型及其识别方法研究[J].测井技术,2010, 34(5):505-510. doi:10.3969/j.issn.1004-1338.-2010.05.023ZHAO Xiaoming, WU Shenghe, YUE Dali, et al. Research on litho faces types and identification method of deep-water submarine fan:Taking one oilfield of west African as a case[J]. Well Logging Technology, 2010,34(5):505-510. doi:10.3969/j.issn.1004-1338.2010.05.-023
    [14] HAUGHTON P D W, BARKER S P, MCCAFFREY W D.'Linked'debrites in sand-rich turbidite systemsorigin and significance[J]. Sedimentology, 2003, 50(3):459-482. doi:10.1046/j.1365-3091.2003.00560.x
    [15] MENARD H W. Deep-sea channels, topography, and sedimentation[J].AAPG Bulletin, 1955(2):236-255. doi:10.-1306/5CEAE136-16BB-11D7-8645000102C1865D
    [16] MUTTI E, NORMARK W R. Comparing examples of modern and ancient turbidite systems:Problems and concepts[M]. Springer Netherlands:Marine Clastic Sedimentology, 1987:1-38.
    [17] LAMB M A. Stratigraphic architecture of a sand-rich,deep-sea depositional system:The stevens sandstone, San Joaquin Basin, California[M]. American Association of Petroleum Geologists, 2003.
    [18]林煜,吴胜和,王星,等.深水浊积水道体系构型模式研究——以西非尼日尔三角洲盆地某深水研究区为例[J].地质论评,2013, 59(3):510-520. doi:10.3969/-j.issn.0371-5736.2013.03.011LIN Yu, WU Shenghe, WANG Xing, et al. Research on architecture model of deepwater turbidity channel system:A case study of a deepwater research area in Niger Delta Basin, West Africa[J]. Geological Review, 2013, 59(3):510-520. doi:10.3969/j.issn.0371-5736.2013.03.011
    [19]李燕,王星,鲍志东,等.被动大陆边缘盆地浊积水道沉积特征及模式—一以西非地区某油田为例[J].内蒙古石油化工,2012, 38(9):109-113.LI Yan, WANG Xing, BAO Zhidong, et al. Sedimentary characteristics and model of turbidity channel in passive continental margin basin[J]. Inner Mongolia Petrochemical Industry, 2012, 38(9):109-113.
    [20]陈祖庆,杨鸿飞,王静波,等.页岩气高精度三维地震勘探技术的应用与探讨——以四川盆地焦石坝大型页岩气田勘探实践为例[J].天然气工业,2016, 36(2):9-20. doi:10.3787/j.issn.1000-0976.2016.02.002CHEN Zuqing, YANG Hongfei, WANG Jingbo,et al.Application of 3D high-precision seismic technology to shale gas exploration:A case study of the large Jiaoshiba shale Gas Field in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(2):9-20. doi:10.3787/j.issn.1000-0976.-2016.02.002
    [21]张光荣,冉崎,廖奇,等.四川盆地高磨地区龙王庙组气藏地震勘探关键技术[J].天然气工业,2016, 36(5):31-37. doi:10.3787/j.issn.1000-0976.2016.05.004ZHANG Guangrong, RAN Qi, LIAO Qi, et al. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti-Moxi area. Sichuan Basin[J]. Natural Gas Industry, 2016, 36(5):31-37. doi:10.3787/j.issn.-1000-0976.2016.05.004
    [22]杨伟利,姜在兴,孙波,等.陆相湖盆可容空间转换特征[J].石油天然气学报,2010, 32(2):11-15. doi:10.3969/j.issn.1000-9752.2010.02.003YANG Weili, JIANG Zaixing, SUN Bo, et al. Characteris-tics of accommodation space transformation of Lacustrine Basin[J]. Journal of Oil and Gas Technology, 2010, 32(2):11-15. doi:10.3969/j.issn.1000-9752.2010.02.003
    [23]王亚青,林承焰,董春梅.东风港油田沙三上浊积扇的“叠置扇”沉积特征[J].西安石油大学学报(自然科学版),2012.27(4):36-41. doi:10.3969/j.issn. 1673-064X.2012.04.007WANG Yaqing, LIN Chengyan, DONG Chunmei. Depositional mode of turbidite fans in upper sub-member of Sha-3 in Dongfenggang Oilfield[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2012.27(4):36-41.doi:10.3969/j.issn. 1673-064X.2012.04.007
    [24]王亚青.东风港油田储层地质精细研究[D].东营:中国石油大学(华东),2008.WANG Yaqing. Detailed research on the reservoir geology of Dongfenggang Oilfield[D]. Dongying:China University of Petroleum(East China), 2008.
    [25]李华,何幼斌,冯斌,等.鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化[J].地球科学,2018,43(6):2149-2159. doi:10.3799/dqkx.2018.568LI Hua, HE Youbin, FENG Bin, et al. The type and evolution of deep-water channel deposits of the Ordovician Lashizhong Formation in western margin of the Ordos Basin[J]. Earth Science, 2018.43(6):2149-2159. doi:10.-3799/dqkx.2018.568
    [26]何小胡,张迎朝,张道军,等.莺-琼盆地轴向水道沉积演化及勘探前景[J].西南石油大学学报(自然科学版),2017, 39(3):66-76. doi:10.11885j.issn.1674-506.2015.2.31.01HE Xiaohu, ZHANG Yingchao, ZHANG Daojun, et al.Sedimentary evolution and exploration prospects of axial channel in Ying-Qiong Basin[J]. Journal of Southwest Petroleum University(Science&Technology Edition), 2017,39(3):66-76. doi:10.11885/j.issn.1674-5086.2015.12.-31.01
    [27]蔡露露,刘春成,吕明,等.西非下刚果盆地深水水道发育特征及沉积储层预测[J].中国海上油气,2016,28(2):60-70. doi:10.11935/j.issn.1673-1506.2016.02.-007CAI Lulu, LIU Chuncheng, LU Ming, et al. The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo Basin, West Africa[J]. China Offshore Oil and Gas, 2016.28(2):60-70.doi:10.11935/j.issn.1673-1506.2016.02.007
    [28]张国涛,张尚锋,李媛,等.尼日尔深水区海底扇水道地震形态与迁移历史[J].大庆石油学院学报,2012,36(1):19-24. doi:10.3969/j.issn.2095-4107.2012.01.-004ZHANG Guotao, ZHANG Shangfeng, LI Yuan, et al. Seismic patterns and migration history of submarine fan channel in Niger deep-water area[J]. Journal of Daqing PetroIeum Institute,2012,36(1):19-24. doi:10.3969/j.issn.-2095-4107.2012.01.004
    [29]刘新颖,于水,陶维祥,等.刚果扇盆地上中新世深水水道充填结构及演化特征[J].地球科学——中国地质大学学报,2012, 37(1):105-112. doi:10.3799/dqkx.-2012.010LIU Xinying, YU Shui,TAO Weixiang, et al. Filling architecture and evolution of Upper Miocene deep-water channel in Congo Fan Basin[J]. Earth Sciencc—Journal of China University of Geosciences, 2012, 37(1):105-112.doi:10.3799/dqkx.2012.010
    [30]吕彩丽,吴时国,袁圣强.深水水道沉积体系及地震识别特征研究[J].海洋科学集刊,2010(50):40-49.LU Caili, WU Shiguo,YUAN Shengqiang. Deep water channel complex sedimentary system and its seismic reflection in Qiongdongnan Basin[J]. Studia Marina Sinica,2010(50):40-49.
    [31]李磊,王英民,张莲美,等.南海北部白云深水区水道与朵体沉积序列及演化[J].海洋地质与第四纪地质,2009, 29(4):71-76.LI Lei,WANG Yingmin, ZHANG Lianmei, et al. Sedimentary sequence and evolution of submarine channellobe in Baiyun deepwater area, northern South China Sea[J]. Marine Geology&Quaternary Geology, 2009,29(4):71-76.
    [32]何小胡,张迎朝,张道军,等.莺琼盆地轴向水道沉积演化及勘探前景[J].西南石油大学学报(自然科学版),2017. 39(3):66-76. doi:10.11885/j.issn.1674-5086.2015.12.31.01HE Xiaohu, ZHANG Yingchao. ZHANG Daojun, et al.Sedimentary evolution and exploration prospects of axial channel in Ying-Qiong Basin[J]. Journal of Southwest Petroleum University(Science&Technology Edition). 2117,39(3):66-76. doi:10.11885/j.issn.1674-5086.2015.12.-31.01

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700