深埋引水隧洞塌方孕育过程微震规律研究:以Neelum-Jhelum工程为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on microseismic evolution law of collapse in deep-buried headrace tunnel:A case study from the Neelum-Jhelum hydropower project
  • 作者:谭双 ; 李邵军 ; 王雪亮 ; 陈炳瑞 ; 肖亚勋 ; 丰光亮 ; 李鹏翔
  • 英文作者:TAN Shuang;LI Shaojun;WANG Xueliang;CHEN Bingrui;XIAO Yaxun;FENG Guangliang;LI Pengxiang;State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Railway Engineering Consulting Group Co.,Ltd.;Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University;
  • 关键词:岩岩岩岩 ; 深埋隧洞 ; 塌方 ; 微震监测 ; 孕育过岩 ; Neelum-Jhelum岩岩
  • 英文关键词:rock mechanics;;deep tunnel;;collapse;;microseismic monitoring;;evolution law;;Neelum-Jhelum project
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;中国科学院大学;中铁工程设计咨询集团有限公司;东北大学深部金属矿山安全开采教育部重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:岩石力学与工程学报
  • 年:2018
  • 期:v.37;No.347
  • 基金:国家自然科岩基金重点项目(U1765206,11232014)~~
  • 语种:中文;
  • 页:YSLX2018S2033
  • 页数:10
  • CN:S2
  • ISSN:42-1397/O3
  • 分类号:318-327
摘要
深埋隧洞复杂地质条件和开挖卸荷导致塌方事故频发,严重威胁现场施岩人员生命财产安全。为降低巴基斯坦Neelum-Jhelum岩岩塌方灾害对施岩的影响,构建微震监测系统,研究塌方孕育过岩微震活动的时空演化规律。研究结果表明:(1)掌子面逐渐靠近但未揭露塌方区岩体时,微震事件较少,累积释放能快速上升,累积视体积缓慢增长,能量指数突增后基本稳定;塌方区岩体开挖揭露后,微震事件较多,累积释放能缓慢增长,累积视体积突增,能量指数突减;(2)塌方区局部微震事件丛集,丛集位置岩钙质岩性交界面发育有关,多数微震事件发生于离洞壁3倍隧洞半径范围内;(3)塌方区围岩破裂机制演化规律有"先剪切,后张拉"的特征;(4)塌方的孕育有明显的阶段特征:钙质充填岩性交界面剪切滑动→围岩揭露后产生平行张拉裂纹→悬臂梁岩块受压拉裂→裂纹贯通,岩块受重岩塌落。研究结果为深部塌方灾害的预警和防治提供参考。
        Complex geological condition and excavation in deep tunnel frequently led to collapse accidents,which seriously threatened the safety of life and property of workers on site. In order to reduce the impact of collapse on the Neelum-Jhelum project in Pakistan,a microseismic monitoring system was constructed to study the temporal and spatial evolution law of the microseismic activity during the development of collapse. The research showed that,when the working face was gradually approaching but didn′t reveal rock mass in the collapse zone,fewer microseismic events occurred,and the cumulative released energy increased rapidly. The cumulative apparent volume grew slowly and the energy index was basically stable after sudden increase. As rock mass in the collapse zone being revealed by excavation,more microseismic events occurred. The cumulative released energy increased slowly,the cumulative apparent volume sharply increased,and the energy index suddenly decreased. Microseismic events clustered in a certain part of collapse zone,where an interface filled with calcite developed. Most of the microseismic events occurred within the 3 times of the tunnel radius from the cavern wall in surrounding rock. The mechanism of rock cracks in the collapse zone was "shearing at the first and tensioning in the end". The development of collapse showed obvious stage characteristics:the interface filled with calcite slide→parallel tensile cracks occurred in surrounding rock after revealed→The cantilever rock beam cracked on the end→The cracks penetrated and the rock blocks fell by gravity.
引文
[1]XIAO Y X,FENG X T,FENG G L,et al.Mechanism of evolution of stress-structure controlled collapse of surrounding rock in caverns:a case study from the Baihetan hydropower station in China[J].Tunnelling and Underground Space Technology,2016,51:56-67.
    [2]SINGH R,SHEOREY P R,SINGH D P.Stability of the parting between coal pillar workings in level contiguous seams[J].International Journal of Rock Mechanics and Mining Sciences,2012,55(1):1-14.
    [3]刘乃飞,李宁,李国锋,等.库尉输水隧洞塌方机制分析及加固效果评价[J].岩石力学与工程学报,2015,34(12):2 531-2 541.(LIU Naifei,LI Ning,LI Guofeng,et al.Collapse mechanism of Kuyu water conveyance tunnel and the appraisement of the consolidate effect[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(12):2 531-2 541.(in Chinese))
    [4]黄晶柱,冯夏庭,周扬一,等.深埋硬岩隧洞复杂岩性挤压破碎带塌方过程及机制分析--以锦屏地下实验室为例[J].岩石力学与工程学报,2017,36(8):1 867-1 879.(HUANG Jingzhu,FENGXiating,ZHOU Yangyi,et al.Analysis of collapse process and mechanism of complex lithologic compressive rupture zone in deep buried hard rock tunnel:a case study of Jinping underground laboratory[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(8):1 867-1 879.(in Chinese))
    [5]JEON S,KIM J,SEO Y,et al.Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(3):486-486.
    [6]段淑倩,冯夏庭,江权,等.高地应力下白鹤滩地下洞室群含错动带岩体破坏模式及机制研究[J].岩石力学与工程学报,2017,36(4):852-864.(DUAN Shuqian,FENG Xiating,JIANG Quan,et al.Failure modes and mechanisms for rock masses with staggered zones of Baihetan underground caverns under high geostress[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(4):852-864.(in Chinese))
    [7]SPOTTISWOODE S M.Perspectives on seismic and rockburst research in the South African gold mining industry:1983-1987[J].Pure and Applied Geophysics,1989,129(3):673-680.
    [8]SMIT L,FAGERENG A,BRAEUER B,et al.Microseismic activity and basement controls on an active intraplate strike-slip fault,Ceres-Tulbagh,South Africa[J].Bulletin of the Seismological Society of America,2015,105(3):1 540-1 547.
    [9]SALVONI M,DIGHT P M.Rock damage assessment in a large unstable slope from microseismic monitoring-MMG century mine(Queensland,Australia)case study[J].Engineering Geology,2016,210(8):45-56.
    [10]LEAKE M R,CONRAD W J,WESTMAN E C,et al.Microseismic monitoring and analysis of induced seismicity source mechanisms in a retreating room and pillar coal mine in the eastern United States[J].Underground Space,2017,2(2):115-124.
    [11]鲁振华,张连城.门头沟矿微震的近场监测效能评估[J].地震,1989,(5):32-39.(LU Zhenhua,ZHANG Liancheng.Evaluation of near-filed monitoring efficiency of tremers in Mentougou mine[J].Earthquake,1989,(5):32-39.(in Chinese))
    [12]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2 048-2 053.(LI Shulin,YIN Xiangang,ZHENG Wenda,et al.Research on multichannel microseismic monitoring system and its application to Fankou lead-zinc mine[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(12):2 048-2 053.(in Chinese))
    [13]唐礼忠,XIA K W,李夕兵.矿山地震活动多重分形特性与地震活动性预测[J].岩石力学与工程学报,2010,29(9):1 818-1 824.(TANGLizhong,XIA K W,LI Xibing.Seismic multi-fractal characteristics in mines and seismicity prediction[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(9):1 818-1 824.(in Chinese))
    [14]冯夏庭,陈炳瑞,明华军,等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报,2012,31(3):433-444.(FENGXiating,CHEN Bingrui,MING Huajun,et al.Evolution law and mechanism of rockbursts in deep tunnels:immediate rockburst[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(3):433-444.(in Chinese))
    [15]陈炳瑞,冯夏庭,明华军,等.深埋隧洞岩爆孕育规律与机制:时滞型岩爆[J].岩石力学与工程学报.2012,31(3):561-569.(CHENBingrui,FENG Xiating,MING Huajun,et al.Evolution law and mechanism of rockbursts in deep tunnels:time delayed rockburst[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(3):561-569.(in Chinese))
    [16]戴峰,李彪,徐奴文,等.白鹤滩水电站地下厂房开挖过程微震特征分析[J].岩石力学与工程学报.2016,35(4):692-703.(DAIFeng,LI Biao,XU Nuwen,et al.Microseismic characteristic analysis of underground powerhouse at Baihetan hydropower station subjected to excavation[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(4):692-703.(in Chinese))
    [17]徐奴文,李彪,戴峰,等.基于微震监测的顺层岩质边坡开挖稳定性分析[J].岩石力学与工程学报.2016,35(10):2 089-2 097.(XU Nuwen,LI Biao,DAI Feng,et al.Stability analysis of bedding rock slopes during excavation based on microseismic monitoring[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(10):2 089-2 097.(in Chinese))
    [18]张伯虎,邓建辉,高明忠,等.基于微震监测的水电站地下厂房安全性评价研究[J].岩石力学与工程学报,2012,31(5):937-944.(ZHANG Bohu,DENG Jianhui,GAO Mingzhong,et al.Safety evaluation research based on microseismic monitoring in underground powerhouse of hydropower station[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(5):937-944.(in Chinese))
    [19]丰光亮,冯夏庭,陈炳瑞,等.白鹤滩柱状节理玄武岩隧洞开挖微震活动时空演化特征[J].岩石力学与工程学报,2015,34(10):1 967-1 975.(FENG Guangliang,FENG Xiating,CHEN Bingrui,et al.Microseismic characteristic analysis of underground powerhouse at Baihetan hydropower station subjected to excavation[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(10):1 967-1 975.(in Chinese))
    [20]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J].岩石力学与工程学报,2009,28(4):740-749.(CHENBingrui,FENG Xiating,LI Shulin,et al.Microseism sourcr location with hierarchical strategy based on particle swarm optimization[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(4):740-749.(in Chinese))
    [21]PEACH G,CARAVANAS A.TBM advance geological forecasting on the Neelum-Jhelum project[J].CZECH Tunnel,2014,23(2):74-80.
    [22]TAN X J.Interim report of in-situ stress measurements by overcoring test in the NJ tunnel 697[R].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of sciences,2015.
    [23]陈炳瑞,冯夏庭,曾雄辉,等.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报,2011,30(2):275-283.(CHEN Bingrui,FENG Xiating,ZENG Xionghui,et al.Real-time microseismic monitoring and its characteristic analysis during TBMtunneling in deep-buried tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(2):275-283.(in Chinese))
    [24]CAI M,KAISER P K,MARTIN C D.A Tensile Model for the interpretation of microseismic events near underground openings[J].Pure and Applied Geophysics,1998,153(1):67-92.
    [25]BOATWRIGHT J,FLETCHER J B.The partition of radiated energy between P and S waves[J].Bulletin of the Seismological Society of America,1984,74(2):361-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700