装配式主动蓄热墙体日光温室热性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal performance analysis of assembled active heat storage wall in Chinese solar greenhouse
  • 作者:鲍恩财 ; 申婷婷 ; 张勇 ; 曹凯 ; 曹晏飞 ; 陈丹艳 ; 何斌 ; 邹志荣
  • 英文作者:Bao Encai;Shen Tingting;Zhang Yong;Cao Kai;Cao Yanfei;Chen Danyan;He Bin;Zou Zhirong;College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture;Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture;College of Water Resources and Architectural Engineering, Northwest A&F University;
  • 关键词:温室 ; 墙体 ; 温度 ; 日光温室 ; 主动蓄热 ; 装配式 ; 蓄热体
  • 英文关键词:greenhouse;;wall;;temperature;;solar greenhouse;;active heat storage;;assembled;;storage body
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:西北农林科技大学园艺学院农业部西北设施园艺工程重点实验室;农业部长江中下游设施农业工程重点实验室;西北农林科技大学水利与建筑工程学院;
  • 出版日期:2018-05-23
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.337
  • 基金:宁夏回族自治区重点研发计划重大项目(2016BZ0901);; 陕西省科技统筹创新工程项目(2016KTCL02-02)
  • 语种:中文;
  • 页:NYGU201810022
  • 页数:9
  • CN:10
  • ISSN:11-2047/S
  • 分类号:186-194
摘要
主动蓄热墙体日光温室作为节能日光温室的一种发展形势,具有较好的蓄放热效果,但施工速度慢、建造成本高。该文采用不同施工工艺建造装配式主动蓄热墙体,对传统主动蓄热墙体日光温室(G1)、回填装配式主动蓄热墙体日光温室(G2)、模块装配式主动蓄热墙体日光温室(G3)进行冬季室内环境测试。试验结果表明,连续晴天条件下,G1、G2、G3的夜间平均气温分别为15.2、16.0、17.3℃,连续阴天条件下,3座温室的夜间平均气温分别为11.3、12.9、13.0℃;连续31 d(2017-12-22至2018-01-21)的测试结果分析表明3座温室的气温总体表现为G3略优于G2,G3、G2均优于G1;G1、G2、G3在典型晴天蓄热体厚度分别为700~800、800~900、700~800 mm,在典型阴天蓄热体厚度分别为300~400、500~600、500~600 mm,G2、G3蓄热体厚度较G1大;G1的每平方米建筑成本为461.1元,G2、G3分别较G1降低了71.2、162.1元;运行成本表现为G1主动蓄热墙体的技术方案可行,且成本较低,在适宜日光温室发展的地区具有一定的推广价值。
        Solar greenhouse is efficient energy-saving greenhouse which plays an important role in the development of protected horticulture in China.The biggest differences between solar greenhouse and other types of greenhouse are the walls,which act as load-bearing,heat storage and heat preservation.At present,a lot of research has been done on the material and structure of solar greenhouse.In terms of material research,it is generally believed that the performance of composite heterogeneous wall is better than that of single material wall.In terms of structure,many scholars have studied the reasonable thickness of the wall and developed an efficient active heat storage wall structure.Active heat storage wall solar greenhouse has a good heat storage capacity,which is the development trend of solar greenhouse.However,there are some disadvantages such as slow construction speed and high cost.In order to solve these problems,in our research,we simplified the construction techniques of active heat storage wall.,The Chinese solar greenhouses with traditional active heat storage wall(G1),backfill-assembled active heat storage wall(G2)and modular assembled active heat storage wall(G3)were constructed,the indoor environments were tested and the thermal performances were analysed.The results showed that under continuous sunny conditions(from 2017-12-30 09:00 to 2018-01-02 09:00),the average temperatures in G1,G2 and G3 were 19.9,20.1,20.8℃;the night average temperature were 15.2,16.0,17.3℃respectively;the night average temperature in G2 and G3 were 0.8 and2.1℃higher than that in G1;the night minimum average temperatures in G1,G2,G3 were 13.4,14.7,15.6℃;night minimum average temperature in G2 and G3 were 1.3 and 2.2℃higher than that in G1.Under continuous cloudy conditions(from 2018-01-13 09:00 to 2018-01-16 09:00),the average temperature in G1,G2 and G3 were 12.9,14.4,14.3℃;the night average temperatures in G1,G2,G3 were 11.3,12.9,13.0℃,the night minimum average temperatures in G1,G2,G3 were 9.8,11.5,11.7℃.Therefore,under continuous cloudy conditions,the temperature in G2 and G3 were almost at the same level but were better than that in G1.The temperature analysis results of the coldest month(from 2017-12-22 to 2018-01-21)showed that the average temperature and night minimum temperature in G2 and G3 were higher than that in G1;and the lowest temperature not higher than 8℃were 2 and 1 days in G2 and G3.Therefore,G2 and G3 had stronger ability to resist continuous low temperature than G1 which could meet the heat demand of greenhouse vegetables without extra heating.The overall performance of G3 was better than that of G2,and the overall performance of G2 better than that of G1.Under typical sunny conditions(from 2017-12-31 09:00 to 2018-1-1 09:00),the heat storage thickness of the wall of G1,G2,G3 were700-800,800-900 and 700-800 mm;under typical cloudy conditions(from 2018-01-14 09:00 to 2018-01-15 09:00),the heat storage thickness of G1,G2,G3 were 300-400,500-600,500-600 mm.The cost of the wall of G1 was 461.1however,the costs of the walls of G2,G3 were significantly reduced to 389.9 and 299.0respectively.In summary,the thermal properties of G2 and G3 were not significantly different,but were both better than that of G1,which could meet the production needs of thermophilic crops in greenhouse.The assembled active heat storage wall was feasible,and the cost was reduced,and had a certain popularization value in some area suitable for constructing greenhouse.
引文
[1]陈青云.日光温室的实践与理论[J].上海交通大学学报:农业科学版,2008,26(5):343-350.Chen Qingyun.Progress of practice and theory in sunlight greenhouse[J].Journal of Shanghai Jiaotong University:Agricultural Science,2008,26(5):343-350.(in Chinese with English abstract)
    [2]张真和.农用塑料技术在设施园艺产业中的应用与发展[J].中国蔬菜,2015(7):1-5.Zhang Zhenhe.Application and development of agricultural plastic technology in horticultural industry[J].China Vegetables,2015(7):1-5.(in Chinese with English abstract)
    [3]李天来.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,36(2):131-138.Li Tianlai.Current situation and prospects of greenhouse industry development in China[J].Journal of Shenyang Agricultural,2005,36(2):131-138.(in Chinese with English abstract)
    [4]喻景权.“十一五”我国设施蔬菜生产和科技进展及其展望[J].中国蔬菜,2011(2):11-23.Yu Jingquan.Progress in protected vegetable production and research during‘The Eleventh Five-year Plan’in China[J].China Vegetables,2011(2):11-23.(in Chinese with English abstract)
    [5]杨仁全,马承伟,刘水丽,等.日光温室墙体保温蓄热性能模拟分析[J].上海交通大学学报:农业科学版,2008,26(5):449-453.Yang Renquan,Ma Chengwei,Liu Shuili,et al.The imitation analysis of heat preservation and capability of the wall of solar greenhouse[J].Journal of Shanghai Jiaotong University:Agricultural Science,2008,26(5):449-453.(in Chinese with English abstract)
    [6]白义奎,王铁良,李天来,等.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报,2003,19(3):190-195.Bai Yikui,Wang Tieliang,Li Tianlai,et al.Theoretical research on heat preservation effect of hollow wall with polyphony board covered with aluminum foil[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2003,19(3):190-195.(in Chinese with English abstract)
    [7]佟国红,王铁良,白义奎,等.日光温室墙体传热特性的研究[J].农业工程学报,2003,19(3):186-189.Tong Guohong,Wang Tieliang,Bai Yikui,et al.Heat transfer property of wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2003,19(3):186-189.(in Chinese with English abstract)
    [8]佟国红,David M Christopher.墙体材料对日光温室温度环境影响的CFD模拟[J].农业工程学报,2009,25(3):153-157.Tong Guohong,David M Christopher.Simulation of temperature variations for various wall materials in Chinese solar greenhouses using computational fluid dynamics[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(3):153-157.(in Chinese with English abstract)
    [9]李小芳.日光温室的热环境数学模拟及其结构优化[D].北京:中国农业大学,2005.Li Xiaofang.Simulation of Thermal Environment and Structural Optimization for Sunlight Greenhouse[D].Beijing:China Agricultural University,2005.(in Chinese with English abstract)
    [10]杨建军,邹志荣,张智,等.西北地区日光温室土墙厚度及其保温性的优化[J].农业工程学报,2009,25(8):180-185.Yang Jianjun,Zou Zhirong,Zhang Zhi,et al.Optimization of earth wall thickness and thermal insulation property of solar greenhouse in Northwest China[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(8):180-185.(in Chinese with English abstract)
    [11]黄雪,王秀峰,魏珉,等.下挖式日光温室土墙温度和热流的变化规律[J].应用生态学报,2013,24(6):1669-1676.Huang Xue,Wang Xiufeng,Wei Min,et al.Variation patterns of soil wall temperature and heat flux in sunken solar greenhouse[J].Chinese Journal of Applied Ecology,2013,24(6):1669-1676.(in Chinese with English abstract)
    [12]彭东玲,张义,方慧,等.日光温室墙体一维导热的MATLAB模拟与热流分析[J].中国农业大学学报,2014,19(5):174-179.Peng Dongling,Zhang Yi,Fang Hui,et al.MATLABsimulation of one-dimensional heat transfer and heat flux analysis of northwall in Chinese solar greenhouse[J].Journal of China Agricultural University,2014,19(5):174-179.(in Chinese with English abstract)
    [13]彭东玲,杨其长,魏灵玲,等.日光温室土质墙体内热流测试与分析[J].中国农业气象,2014,35(2):168-173.Peng Dongling,Yang Qichang,Wei Lingling,et al.Measurement and heat flux analysis on north earthen wall in Chinese solar greenhouse[J].Chinese Journal of Agrometeorology,2014,35(2):168-173.(in Chinese with English abstract)
    [14]李明,周长吉,魏晓明.日光温室墙体蓄热层厚度确定方法[J].农业工程学报,2015,31(2):177-183.Li Ming,Zhou Changji,Wei Xiaoming.Thickness determination of heat storage layer of wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(2):177-183.(in Chinese with English abstract)
    [15]白青,张亚红,孙利鑫.基于温波传递理论的日光温室土墙体蓄热层及墙体厚度分析[J].农业工程学报,2016,32(22):207-213.Bai Qing,Zhang Yahong,Sun Lixin.Analysis on heat storage layer and thickness of soil wall in solar greenhouse based on theory of temperature-wave transfer[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):207-213.(in Chinese with English abstract)
    [16]史宇亮,王秀峰,魏珉,等.日光温室不同厚度土墙体蓄放热特性研究[J].农业机械学报,2017,48(11):359-367.Shi Yuliang,Wang Xiufeng,Wei Min,et al.Comparison of heat storage and release characteristics of different thicknesses soil wall solar greenhouse[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(11):359-367.(in Chinese with English abstract)
    [17]凌浩恕,陈超,陈紫光,等.日光温室带竖向空气通道的太阳能相变蓄热墙体体系[J].农业机械学报,2015,46(3):336-343.Ling Haosu,Chen Chao,Chen Ziguang,et al.Performance of phase change material wall with vertical air channels integrating solar concentrators[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):336-343.(in Chinese with English abstract)
    [18]张勇,邹志荣.一种蓄热后墙的日光温室:中国专利,102630526[P].2012-08-15.
    [19]张勇,高文波,邹志荣.主动蓄热后墙日光温室传热CFD模拟及性能试验[J].农业工程学报,2015,31(5):203-211.Zhang Yong,Gao Wenbo,Zou Zhirong.Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(5):203-211.(in Chinese with English abstract)
    [20]高文波,张勇,邹志荣,等.主动采光蓄热型日光温室性能初探[J].农机化研究,2015,37(7):181-186.Gao Wenbo,Zhang Yong,Zou Zhirong,et al.Preliminary study on performance in an active lighting and heating storage type solar greenhouse[J].Journal of Agricultural Mechanization Research,2015,37(7):181-186.(in Chinese with English abstract)
    [21]鲍恩财,朱超,曹晏飞,等.固化沙蓄热后墙日光温室热工性能试验[J].农业工程学报,2017,33(9):187-194.Bao Encai,Zhu Chao,Cao Yanfei,et al.Thermal performance test of solidified sand heat storage wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(9):187-194.(in Chinese with English abstract)
    [22]李天来,邹志荣,马承伟,等.节能日光温室设计建造规程[M].北京:中国农业出版社,2017.
    [23]闫俊月,李明,张秋生,等.“西北非耕地温室结构与建造技术”项目成果汇报(4)轻简化装配式后墙[J].农业工程技术·温室园艺,2014(4):62-63.
    [24]张洁,邹志荣,张勇,等.新型砾石蓄热墙体日光温室性能初探[J].北方园艺,2016(2):46-50.Zhang Jie,Zou Zhirong,Zhang Yong,et al.Rerformance of heating storage gravel wall solar greenhouse[J].Northern Horticulture,2016(2):46-50.(in Chinese with English abstract)
    [25]张义,方慧,周波,等.轻简装配式主动蓄能型日光温室[J].农业工程技术·温室园艺,2015(25):36-38.
    [26]李明,周长吉,周涛,等.日光温室土墙传热特性及轻简化路径的理论分析[J].农业工程学报.2016,32(3):175-181.Li Ming,Zhou Changji,Zhou Tao,et al.Heat transfer process of soil wall in Chinese solar greenhouse and its theoretical simplification methods[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(3):175-181.(in Chinese with English abstract)
    [27]张勇,邹志荣.一种可变倾角采光面的日光温室.101116408[P].2008-02-06.
    [28]张勇,邹志荣.一种主动采光及固化土自主蓄热后墙日光温室:中国专利,103416261[P].2013-12-04.
    [29]张勇,邹志荣,汤青川.一种智能光伏温室及其多功能骨架:中国专利,205865339[P].2017-01-11.
    [30]鲍恩财,邹志荣,张勇.日光温室墙体用相变固化土性能测试及固化机理[J].农业工程学报,2017,33(16):203-210.Bao Encai,Zou Zhirong,Zhang Yong.Performance test and curing mechanism of phase change cured soil for solar greenhouse walls[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(16):203-210.(in Chinese with English abstract)
    [31]张勇.一种温室全热交换除湿风道管系统:中国专利,206452876[P].2017-09-01.
    [32]张勇.一种基于相变固化土的夯土墙成型方法与装置:106639005[P].2017-05-10.
    [33]张勇.一种基于张弦梁的夯土墙成型装置:中国专利,206888272[P].2018-01-16.
    [34]邹志荣,鲍恩财,申婷婷,等.模块化组装式日光温室结构设计与实践[J].农业工程技术·温室园艺,2017(31):50-55.
    [35]王昭,陈振东,邹志荣,等.青海型主动蓄热日光温室应用性能分析[J].中国农业大学学报,2017,22(8):116-123.Wang Zhao,Chen Zhendong,Zou Zhirong,et al.Application performance analysis on active heating storage greenhouse of Qinghai style[J].Journal of China Agricultural University,2017,22(8):116-123.(in Chinese with English abstract)
    [36]魏瑞江,李春强,康西言.河北省日光温室低温寡照灾害风险分析[J].自然灾害学报,2008,17(3):56-62.Wei Ruijiang,Li Chunqiang,Kang Xiyan.Hazard risk analysis of low temperature and few sunshine for sunshine greenhouse in Hebei Province[J].Journal of Natural Disasters,2008,17(3):56-62.(in Chinese with English abstract)
    [37]黎贞发,于红.持续低温及低温连阴天气下几种典型日光温室保温性能评价[J].中国农学通报,2013,29(23):123-128.Li Zhenfa,Yu Hong.Analysis of insulation performance of several typical greenhouses under continuous low temperature and overcast weather[J].Chinese Agricultural Science Bulletin,2013,29(23):123-128.(in Chinese with English abstract)
    [38]陕西气象局.陕西省气象局启动重大气象灾害(暴雪)Ⅲ级应急响应命令[DB/OL].http://www.sxmb.gov.cn/index.php/cms/item-view-id-76984.shtml,2018-01-02.
    [39]邹志荣,邵孝侯.设施农业环境工程学[M].北京:中国农业出版社,2008.
    [40]温祥珍,李亚灵.日光温室砖混结构墙体内冬春季温度状况[J].山西农业大学学报:自然科学版,2009,29(6):525-528.Wen Xiangzhen,Li Yaling.Analysis of temperature within north composite wall of solar greenhouse[J].Journal of Shanxi Agricultural University:Natural Science Edition,2009,29(6):525-528.(in Chinese with English abstract)
    [41]陈超.现代日光温室建筑热工设计理论与方法[M].北京:科学出版社,2017.
    [42]柯行林,杨其长,张义,等.主动蓄放热加热基质与加热空气温室增温效果对比[J].农业工程学报,2017,33(22):224-232.Ke Xinglin,Yang Qichang,Zhang Yi,et al.Warming effect comparison between substrate warming system and air warming system by active heat storage-release in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(22):224-232.(in Chinese with English abstract)
    [43]鲍恩财,张勇,曹晏飞,等.不同材质传热风道性能及蓄热土壤温度场CFD模拟[J].农业工程学报,2018,34(4):232-238.Bao Encai,Zhang Yong,Cao Yanfei,et al.Performance of different material heat transfer pipes and CFD simulation of thermal storage soil temperature distribution[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(4):232-238.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700