主动蓄热日光温室不同气流方向后墙传热CFD模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CFD simulation of heat transfer in back-wall of active thermal-storage solar greenhouse with different airflow directions
  • 作者:鲍恩财 ; 邹志荣 ; 张勇
  • 英文作者:Bao Encai;Zou Zhirong;Zhang Yong;College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs;Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Science, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs;
  • 关键词:温室 ; 墙体 ; 温度 ; 主动蓄热 ; 气流分布 ; 数值模拟 ; 日光温室
  • 英文关键词:greenhouse;;walls;;temperature;;active thermal storage;;airflow distribution;;numerical simulation;;solar greenhouse
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:西北农林科技大学园艺学院农业农村部西北设施园艺工程重点实验室;江苏省农业科学院农业设施与装备研究所农业农村部长江中下游设施农业工程重点实验室;
  • 出版日期:2018-11-23
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.349
  • 基金:宁夏回族自治区重点研发计划重大项目(2016BZ0901);; 陕西省重点研发计划项目(2018TSCXL-NY-05-05);; 陕西省科技统筹创新工程项目(2016KTCL02-02);; 江苏省农业科技自主创新资金(CX(16)1002)
  • 语种:中文;
  • 页:NYGU201822021
  • 页数:9
  • CN:22
  • ISSN:11-2047/S
  • 分类号:177-185
摘要
日光温室是一种能源高效利用型的温室结构,在中国北方的设施园艺产业中起到了非常重要的作用,其中主动储热日光温室结构是最近该领域研究的热点问题之一。针对高效主动储热风道的研究问题,该文构建了3种不同气流运动方式的主动蓄热日光温室后墙模型,分别是顶进顶出气流运动方式的主动蓄热日光温室后墙(W1)、侧进侧出气流运动方式的主动蓄热日光温室后墙(W2)、侧进顶出气流运动方式的主动蓄热日光温室后墙(W3)。在W1工况下对比试验数据及数值模拟数据发现,平均相对误差为6.7%,最大相对误差为13.4%,说明该文所建模型的数值模拟与试验数据有很好的一致性;进一步模拟结果表明,进口条件一致的情况下,W1、W2、W3在主动蓄热循环系统运行阶段的有效蓄热范围分别为700~800、500~600、600~700 mm;W1、W2、W3的出口平均温度分别为17.3、18.9、18.2℃,进一步计算得到,3种工况下,内部空气流的努塞尔特数分别为40.95、35.25、35.30;3种不同气流循环运动方式下,温室后墙的对流换热强烈程度表现为W1最大,W3其次,W2最小。该研究为设计主动蓄热日光温室墙体气流循环运动方式提供了理论依据和试验参考。
        China solar greenhouse(CSG) is efficient energy-saving greenhouse, and plays an important role in Chinese protected horticulture development. The biggest difference between solar greenhouse and other types of greenhouse is the back-wall, which works as load-bearing, thermal-storage and heat preservation. Presently, there are many researches on the material and structure of solar greenhouse. In terms of structure, many scholars have studied the appropriate thickness of wall and developed efficient active thermal storage wall structure. Active thermal storage structure of solar greenhouse is the research hotspot in the CSG field recently. However, it also has some disadvantages, such as unscientific air flow mode and lower thermal storage efficiency. To solve the research problem of active thermal-storage structure of solar greenhouse, this paper developed three types active thermal-storage back-wall with different air circulation mode. Three modes were inflated from the top of the back-wall and outflow from the top of the back-wall(W1 operating mode), inflated from the side edge of the back-wall and outflow from the side edge(W2 operating mode), and inflated from the side edge of the back-wall and outflow from the top of the back-wall(W3 operating mode) respectively. By using the business CFD software of Fluent, the model was computed with RNG k-ε turbulent model. Then internal airflow and air temperature distribution was forecasted. With the results of simulation compared with experimental data, the feasibility and veracity of numerical simulation by software of Fluent to active thermal-storage CSG was validated. In this dissertation, CFD numerical simulations of three-dimensional turbulent flow in heat exchange pipes of CSG back-wall were conducted. And the temperature distribution of the back-wall thermal-storage system of CSG was measured at the same time to analyse the distribution of airflow velocity within heat exchange pipes and heat saving performance of the back-wall thermal-storage system in CSG. The results showed that the measured data was the same as the numerical simulation results, the mean relative error was 6.7%, and maximum relative error was 13.4% under the W1 operating mode. Analysis shows the reliable consistency between the numerical simulation results and measured data. Further analysis showed that the effective thermal storage range of W1, W2, W3 under the same inlet condition were 700-800, 500-600, 600-700 mm respectively. The Nu of internal air flow under W1, W2, W3 were 40.95, 35.25, 35.30 respectively. The convection heat transfer between the hot airflow and duct wall of W1 was greater than W3 and W2. In summary, the thermal performance between W2 and W3 was not obvious, but both lower than W1, which can meet the production of warm crop in greenhouse. The assembled active thermal storage wall with W1 mode was feasible, and had a certain popularization value in the some suitable greenhouse area. This paper on the basis of the effective experiment, simulates and analyses the microclimate under different inlet and outlet conditions of the CSG, and predicts energy consumption. This research provides a theoretical basis and experimental reference of scientific design of air circulation mode of active thermal-storage CSG.
引文
[1]张起勋.日光温室内空气流动特性研究[D].长春:吉林农业大学,2007.Zhang Qixun.Simulation of the Air Flow Characteristic of Solar Greenhouse[D].Changchun:Jilin Agricultural University,2007.(in Chinese with English abstract)
    [2]杨振超,邹志荣,王军,等.温室内气流运动速率对厚皮甜瓜生长发育的影响[J].农业工程学报,2007,23(3):198-201.Yang Zhenchao,Zou Zhirong,Wang Jun,et al.Effects of air speed in greenhouse on the growth of muskmelon plants[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(3):198-201.(in Chinese with English abstract)
    [3]Yu I,Cho M,Chun H,et al.Effects of circulation fans on uniformity of meteorological factors in warm air heated greenhouse[J].Protected Horticulture and Plant Factory,2007,16(4):291-296.
    [4]Ishii M,Okushima L,Moriyama H,et al.Influence of circulation fans on the distribution of air temperature and air velocity in a greenhouse[J].Journal of Science and High Technology in Agriculture,2012,24(3):193-200.
    [5]段明辉,杨方,王润涛,等.冬季日光温室气流组织研究[J].农机化研究,2014,36(10):54-57.Duan Minghui,Yang Fang,Wang Runtao,et al.The Research of the Temperature in Solar Greenhouse in Winter[J].Journal of Agricultural Mechanization Research,2014,36(10):54-57.(in Chinese with English abstract)
    [6]马承伟,王莉,丁小明,等.温室通风设计规范中通风量计算理论及方法体系的构建[J].上海交通大学学报:农业科学版,2008,26(5):416-419,423.Ma Chengwei,Wang Li,Ding Xiaoming,et al.Theories and methods for calculation of ventilation rate in design rule for greenhouse ventilation[J].Journal of Shanghai Jiaotong University:Agricultural Science,2008,26(5):416-419,423.(in Chinese with English abstract)
    [7]陈超.现代日光温室建筑热工设计理论与方法[M].北京:科学出版社,2017.
    [8]王润涛,段明辉,杨方,等.冬季日光温室温度场优化研究[J].东北农业大学学报,2014,45(10):101-106,121.Wang Runtao,Duan Minghui,Yang Fang,et al.Study on temperature optimization in solar greenhouse in winter[J].Journal of Northeast Agricultural University,2014,45(10):101-106,121.(in Chinese with English abstract)
    [9]Kuroyanagi T.Current usage of air circulators in greenhouses in Japan[J].Jarq-Japan Agricultural Research Quarterly,2016,50(1):7-12.
    [10]张栎,冯晓龙,赵淑梅,等.扰流风机对日光温室环境及番茄生长的影响[J].中国蔬菜,2016(9):52-57.Zhang Yue,Feng Xiaolong,Zhao Shumei,et al.Effects of Air Circulator on Environmental Parameter and Tomato Growth in Solar Greenhouse[J].China Vegetavles,2016(9):52-57.(in Chinese with English abstract)
    [11]郭慧卿,李镇海,张振武,等.日光温室北墙构造与室内温度环境的关系[J].沈阳农业大学学报,1995,26(2):193-199.Guo Huiqing,Li Zhenhai,Zhang Zhenwu,et al.The relationship between the north wall construction and interior temperature environment in solar greenhouse[J].Journal of Shenyang Agricultural University,1995,26(2):193-199.(in Chinese with English abstract)
    [12]张立芸,徐刚毅,马承伟,等.日光温室新型墙体结构性能分析[J].沈阳农业大学学报,2006,37(3):459-462.Zhang Liyun,Xu Gangyi,Ma Chengwei,et al.Application of aerated concrete in solar greenhouse[J].Journal of Shenyang Agricultural University,2006,37(3):459-462.(in Chinese with English abstract)
    [13]王庆荣,程杰宇,崔文慧,等.日光温室对流循环蓄热墙体构造对室内气流场的影响[J].新疆农业科学,2016,53(7):1319-1328.Wang Qingrong,Cheng Jieyu,Cui Wenhui,et al.Impact on indoor air distribution with the convective circulation thermal storage wall of Chinese solar greenhouse[J].Xinjiang Agricultural Sciences,2016,53(7):1319-1328.(in Chinese with English abstract)
    [14]赵淑梅,庄云飞,郑可欣,等.日光温室空气对流蓄热中空墙体热性能试验[J].农业工程学报,2018,34(4):223-231.Zhao Shumei,Zhuang Yunfei,Zheng Kexin,et al.Thermal performance experiment on air convection heat storage wall with cavity in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(4):223-231.(in Chinese with English abstract)
    [15]张勇,邹志荣.一种蓄热后墙的日光温室:102630526[P].2012-08-15.
    [16]高文波,张勇,邹志荣,等.主动采光蓄热型日光温室性能初探[J].农机化研究,2015,37(7):181-186.Gao Wenbo,Zhang Yong,Zou Zhirong,et al.Preliminary study on performance in an active lighting and heating storage type solar greenhouse[J].Journal of Agricultural Mechanization Research,2015,37(7):181-186.(in Chinese with English abstract)
    [17]陈振东.青海新型日光温室性能的研究[D].杨凌:西北农林科技大学,2016.Chen Zhendong.The Measure of Qinghai’s New Type of Solar Greenhouse’S Performance[D].Yangling:Northwest A&F University,2016.(in Chinese with English abstract)
    [18]张勇,邹志荣.一种主动采光及固化土自主蓄热后墙日光温室:103416261[P].2013-12-04.
    [19]张勇.一种温室全热交换除湿风道管系统:206452876[P].2017-09-01.
    [20]张勇.一种基于张弦梁的夯土墙成型装置:206888272[P].2018-01-16.
    [21]张勇,高文波,邹志荣.主动蓄热后墙日光温室传热CFD模拟及性能试验[J].农业工程学报,2015,31(5):203-211.Zhang Yong,Gao Wenbo,Zou Zhirong.Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(5):203-211.(in Chinese with English abstract)
    [22]鲍恩财,邹志荣,张勇.日光温室墙体用相变固化土性能测试及固化机理[J].农业工程学报,2017,33(16):203-210.Bao Encai,Zou Zhirong,Zhang Yong.Performance test and curing mechanism of phase change cured soil for solar greenhouse walls[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(16):203-210.(in Chinese with English abstract)
    [23]Mishra V K,Mishra S C,Basu D N.Combined mode conduction and radiation heat transfer in a porous medium and estimation of the optical properties of the porous matrix[J].Numerical Heat Transfer,Part A:Applications,2015,67(10):1119-1135.
    [24]闫婷婷,杜震宇.日光温室土壤-空气换热器周围土壤中热湿迁移规律研究[J].工程热物理学报,2018,39(2):434-441.Yan Tingting,Du Zhenyu.Study on the heat and moisture transfer principles of soil fields surrounding the soil-air heat exchanger in solar greenhouse[J].Journal of engineering thermophysics,2018,39(2):434-441.(in Chinese with English abstract)
    [25]杨睿.含热源土壤热湿迁移模拟与埋地换热器实验研究[D].天津:天津大学,2007.Yang Rui.Simulation on Heat and Moisture Transfer in Soil and Experimental Investigation on Underground Heat Exchanger[D].Tianjin:Tianjin University,2007.(in Chinese with English abstract)
    [26]李永博,周伟,李鹏飞,等.基于CFD模拟模型的温室温度场均匀性控制[J].农业机械学报,2012,43(4):156-161.Li Yongbo,Zhou Wei,Li Pengfei,et al.Temperature homogeneity control of greenhouse based on cfd simulation model[J].Transactions of The Chinese Society for Agricultural Machinery,2012,43(4):156-161.(in Chinese with English abstract)
    [27]Fidaros D K,Baxenanou C A,Bartzanas T,et al.Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day[J].Agricultural and Forest Meterology,2009,149(6/7):1050-1062.
    [28]程秀花,毛罕平,伍德林,等.玻璃温室自然通风热环境时空分布数值模拟[J].农业机械学报,2009,40(6):179-183.Cheng Xiuhua,Mao Hanping,Wu Delin,et al.Numerical simulation of thermal profiles in spatial and temporal field for natural ventilated glasshouse[J].Transactions of The Chinese Society for Agricultural Machinery,2010,41(1):153-158.(in Chinese with English abstract)
    [29]吴飞青,张立彬,胥芳,等.机械通风条件下玻璃温室热环境数值模拟[J].农业机械学报,2010,41(1):153-158.Wu Feiqing,Zhang Libin,Xu Fang,et al.Numerical simulation of the thermal environment in a mechanically ventilated greenhouse[J].Transactions of The Chinese Society for Agricultural Machinery,2010,41(1):153-158.(in Chinese with English abstract)
    [30]李明,周长吉,魏晓明.日光温室墙体蓄热层厚度确定方法[J].农业工程学报,2015,31(2):177-183.Li Ming,Zhou Changji,Wei Xiaoming.Thickness determination of heat storage layer of wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(2):177-183.(in Chinese with English abstract)
    [31]Ahmad R A.Steady state numerical solution of the Navier-Stokes and energy equations around a horizontal cylinder at moderate Reynolds numbers from 100 to 500[J].Heat Transfer Engineering,1996,17(1):31-38.
    [32]Lange C F,Durst F,Breuer M.Momentum and heat transfer from cylinders in laminar cross flow at 10-4    [33]民用建筑热工设计规范:GB 50176-2016[S].
    [34]Stern F,Wilson R,Coleman H W,et al.Comprehensive approach to verification and validation of CFDsimulations-Part 1:Methodologies and procedures[J].Journal of Fluids Engineering Transactions of the ASME,2001,123:793-802.
    [35]张涵信,查俊.关于CFD验证确认中的不确定度和真值估算[J].空气动力学学报,2010,28(1):39-45.Zhang Hanxin,Zha Jun.The uncertainty and truth-value assessment in the verification and validation of CFD[J].Acta Aerodynamica Sinica,2010,28(1):39-45.(in Chinese with English abstract)
    [36]张涵信.关于CFD计算结果的不确定度问题[J].空气动力学学报,2008,26(1):47-49,90.Zhang Hanxin.On the uncertainty about CFD results[J].Acta Aerodynamica Sinica,2008,26(1):47-49,90.(in Chinese with English abstract)
    [37]程秀花,毛罕平,倪军.风速对温室内气流分布影响的CFD模拟及预测[J].农机化研究,2010,32(12):15-18.Cheng Xiuhua,Mao Hanping,Ni Jun.CFD Simulations and predicts for effect of external airflow speeds on airflow profiles inside venlo glasshouse[J].Journal of Agricultural Mechanization Research,2010,32(12):15-18.(in Chinese with English abstract)
    [38]邓书辉,施正香,李保明,等.低屋面横向通风牛舍空气流场CFD模拟[J].农业工程学报,2014,30(6):139-146.Deng Shuhui,Shi Zhengxiang,Li Baoming,et al.CFDsimulation of airflow distribution in low profile cross ventilated dairy cattle barn[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(6):139-146.(in Chinese with English abstract)
    [39]白青,张亚红,孙利鑫.基于温波传递理论的日光温室土墙体蓄热层及墙体厚度分析[J].农业工程学报,2016,32(22):207-213.Bai Qing,Zhang Yahong,Sun Lixin.Analysis on heat storage layer and thickness of soil wall in solar greenhouse based on theory of temperature-wave transfer[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):207-213.(in Chinese with English abstract)
    [40]Incropera F P,DeWitt D P,Bergman T L,et al.Fundamentals of Heat and Mass Transfer[M].6th Edition.New York City:John Wiley&Sons,Inc.,2007:318-320.
    [41]Vargaftik N B.Tables of Thermophysical Properties of Liquids and Gases[M].2nd ed..New York:Hemisphere Publishing,1975.
    [42]杨世铭,陶文铨.传热学[M].第四版.北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700