岩溶地区主量元素地球化学特征及其迁移规律——以贵州双河洞为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Geochemical Characteristics and Migration of Major Elements in Karst Area——Taking Shuanghe Cave in Guizhou as An Example
  • 作者:殷超 ; 周忠发 ; 田衷珲 ; 张绍云 ; 汪炎林
  • 英文作者:YIN Chao;ZHOU Zhongfa;TIAN Zhonghui;ZHANG Shaoyun;WANG Yanlin;School of Karst Science,Guizhou Normal University;State Engineering Technology Institute for Karst Desertification Control;The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province;
  • 关键词:岩溶 ; 主量元素 ; 元素迁移 ; 主成分回归分析 ; 贡献率
  • 英文关键词:karst;;major elements;;element migration;;principal component regression analysis;;contribution rate
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:贵州师范大学喀斯特研究院;国家喀斯特石漠化防治工程技术研究中心;贵州省喀斯特山地生态环境国家重点实验室培育基地;
  • 出版日期:2018-02-15
  • 出版单位:水土保持学报
  • 年:2018
  • 期:v.32;No.154
  • 基金:国家自然科学基金地区项目(41661088,41361081);; 贵州省高层次创新型人才培养计划“百”层次人才项目(黔科合平台人才[2016]5674))
  • 语种:中文;
  • 页:TRQS201801048
  • 页数:10
  • CN:01
  • ISSN:61-1362/TV
  • 分类号:306-314+322
摘要
通过对土壤理化性质的分析以及土壤水和岩石主量元素的测定,同时构建主成分多元回归模型探讨影响岩溶地区主量元素迁移的主要因素,并计算其贡献率。结果表明:Mg和Ca在各土壤点的含量分别可达1 393.98~5 497.42,880.47~3 133.43mg/kg,远高于K和Na的498.58~3 315.42,32.98~186.75mg/kg。土壤CO2浓度和土壤温度具有显著的夏秋高于冬春的季节性特征,土壤孔隙度则随着土层深度的增加不断降低,土壤水中HCO_3~-和Ca~(2+)含量最高。各主量元素迁移能力的强弱为Na>Ca>Mg>K,且各元素迁移系数总体上在夏季最高。对主量元素迁移贡献率最大的因素主要包括降水量、土壤CO_2浓度、土壤温度和土壤水阴离子含量,这些因素在各土壤点的累积贡献率可达52.84%~79.06%;土壤容重、土壤和土壤水中主量元素含量累积贡献率均值达22.98%,显著低于前述因子。而土壤总孔隙度和土壤充气孔隙度的贡献率较低,仅2.19%~8.76%。
        Through the determination of soil physical and chemical properties and the major elements in soil water and rocks,the principal component multiple regression model was built to investigate the main influencing factors of major elements migration,and their contribution rates were calculated.The results showed that the Mg and Ca content at each soil monitoring points ranged 1 393.98~5 497.42 mg/kg,880.47~3 133.43 mg/kg respectively,which were higher than K and Na,i.e.,498.58~3 315.42,32.98~186.75 mg/kg,respectively.Soil CO_2 concentration and soil temperature had the significant seasonal characteristics,which gave the higher values in summer and autumn than in winter and spring.Soil porosity decreased with the increasing depth,and the contents of HCO_3~- and Ca~(2+) in soil water were higher than other ions.The migration ability of main elements was Na > Ca > Mg > K,and the migration coefficients in summer of all elements were the highest.The factors with high contribution rate to major elements migration included precipitation,soil CO_2 concentration,soil temperature and the content of anion in soil water,and their cumulative contribution rate reached up to 52.84%~79.06%.The cumulative contribution rate of soil bulk density and the major elements content in soil and soil water was 22.98%,significantly lower than the aforementioned factors.The contribution rate of total soil porosity and aeration porosity were even lower,just 2.19%~8.76%.
引文
[1]李学垣.土壤化学[M].北京:高等教育出版社,2001:1-3.
    [2]蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999,54(5):439-445.
    [3]楚纯洁,赵景波.西安少陵塬黄土—古土壤序列S-3剖面元素迁移及古气候意义[J].土壤学报,2016,53(2):311-321.
    [4]蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移[J].中国岩溶,1997,16(4):24-32.
    [5]蒋忠诚.论南方岩溶山区生态环境的元素有效态[J].中国岩溶,2000,19(2):123-128.
    [6]李为,刘彦,余龙江,等.桂林岩溶试验场不同地貌部位主要元素迁移特征及与植物蒸腾作用的相关性[J].华中农业大学学报,2007,26(1):55-58.
    [7]李为,刘彦,吴耿,等.桂林毛村不同地质背景主要元素迁移特征及与植物蒸腾作用的相关性[J].土壤,2007,39(5):746-752.
    [8]Tatár E,Mihucz V G,ZámbóL,et al.Seasonal changes of fulvic acid,Ca and Mg concentrations of water samples collected above and in the Béke Cave of the Aggtelek karst system(Hungary)[J].Applied Geochemistry,2004,19(11):1727-1733.
    [9]Tatár E,Mihucz V G,Tompa K,et al.Study of soil leachates in doline above the Béke Cave,Hungary[J].Geoderma,2004,120(1/2):155-164.
    [10]Fairchild I J,Borsato A,Tooth A F,et al.Controls on trace element(Sr-Mg)compositions of carbonate cave waters:Implications for speleothem climatic records[J].Chemical Geology,2000,166(3/4):255-269.
    [11]Huang Y,Fairchild I J.Partitioning of Sr2+and Mg2+into calcite under karst-analogue experimental conditions[J].Geochimica Et Cosmochimica Acta,2011,65(1):47-62.
    [12]向晓晶.重庆芙蓉洞洞穴系统元素运移的地球化学过程及其环境意义[D].重庆:西南大学,2011.
    [13]邓艳,蒋忠诚,罗为群,等.不同岩溶生态系统中元素的地球化学迁移特征比较:以广西弄拉和弄岗自然保护区为例[J].中国岩溶,2006,25(2):168-171.
    [14]杨慧,梁建宏,陈家瑞,等.桂林丫吉岩溶试验场不同地貌部位土壤钙元素形态特征[J].资源与生态学报(英文版),2015,6(4):224-229.
    [15]尹川,季宏兵,魏晓,等.黔北坡面林地土壤侵蚀与微量元素迁移研究[J].水土保持学报,2014,28(6):24-29.
    [16]李吉龙,段武辉,吴江滢.安徽蓬莱仙洞不同滴水点差异PCP作用及其古气候记录研究意义[J].第四纪研究,2014,34(4):905-906.
    [17]沈利娜,邓新辉,蒋忠诚,等.表层岩溶带生态系统的水文地球化学效应:以弄拉兰电堂泉域为例[J].地球与环境,2010,38(2):189-197.
    [18]罗炼,陈康清.双河洞最新探测长度达200余公里排名全球第十[EB/OL].2017-04-26.http://gz.people.com.cn/n2/2017/0426/c222152-30096543.html.
    [19]朱文孝,李坡.贵州绥阳双河洞国家地质公园简介[J].贵州地质,2004,21(3):205-212.
    [20]贺卫,李坡,车家骧.刍议双河洞穴系统主要形成特征及演化[J].贵州科学,2001,19(1):71-76.
    [21]陈建庚,张英骏.贵州绥阳双河洞系的发育与成因探讨[J].中国岩溶,9(3):247-255.
    [22]刘平.贵州绥阳双河洞国家地质公园洞穴基本特征及成因探讨[J].贵州地质,2008,25(4):302-305.
    [23]殷超,周忠发,张绍云,等.喀斯特地区土壤CO2扩散通量变化特征及其影响因素分析[J].生态环境学报,2017,26(7):1122-1130.
    [24]张韫.土壤、水、植物理化分析法[M].北京:中国林业出版社,2011:5-6.
    [25]殷超,周忠发,王平.一种土壤水过滤收集装置:中国,CN205991896U[P].2017-03-01.
    [26]АИ彼列尔曼.后生地球化学[M].北京:科学出版社,1975.
    [27]蒋忠诚.峰丛石山的岩溶作用及生态环境元素迁移典型研究[D].北京:中国地质科学院,1997.
    [28]孙爱芝,韩晓丽,强杨,等.海原剖面12.5-7.2kaBP期间化学元素与粒度组成的古环境意义[J].干旱区资源与环境,2011,25(7):146-149.
    [29]田均良,刘普灵,李雅琦.黄土高原土壤剖面元素相对迁移强度初探[J].水土保持研究,1995,2(4):51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700