琼东南盆地陵南低凸起崖城组沉积物源的地球化学与碎屑锆石U-Pb年龄记录
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Provenance of Sediments of the Yacheng Formation in the Lingnan Low Uplift, Qiongdongnan Basin: Evidences from U-Pb Dating of Detrital Zircons and Geochemistry of the Sediments
  • 作者:修淳 ; 翟世奎 ; 霍素霞 ; 刘新宇 ; 刘晓锋 ; 陈奎
  • 英文作者:XIU Chun;ZHAI Shi-kui;HUO Su-xia;LIU Xin-yu;LIU Xiao-feng;CHEN Kui;North China Sea Environmental Monitoring Center of SOA;Key Laboratory of Submarine Geosciences and Technology of Ministry of Education;College of Marine Geosciences, Ocean University of China;Zhanjiang Branch of China National Offshore Oil Corporation Limited;
  • 关键词:物源 ; 地球化学 ; U-Pb年龄 ; 崖城组 ; 琼东南盆地
  • 英文关键词:provenance;;geochemistry;;U-Pb age;;Yacheng Formation;;Qiongdongnan Basin
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:国家海洋局北海环境监测中心;海底科学与探测技术教育部重点实验室;中国海洋大学海洋地球科学学院;中海石油有限公司湛江分公司;
  • 出版日期:2018-07-24 11:51
  • 出版单位:矿物岩石地球化学通报
  • 年:2018
  • 期:v.37
  • 基金:国家重大专项(2011ZX05025-002-03);; 中海油石油总公司项目(CNOOC-2013-ZJ-01);; 海洋公益性行业科研专项(201105003-2)
  • 语种:中文;
  • 页:KYDH201806011
  • 页数:12
  • CN:06
  • ISSN:52-1102/P
  • 分类号:104-115
摘要
为研究琼东南盆地深水区陵南低凸起的LS33A井崖城沉积时期的物源特性,对其进行了地球化学和碎屑锆石U-Pb年龄分析。结果表明,崖城组碎屑锆石年龄为95.8~387.9 Ma,在频谱图上集中于95~106 Ma(燕山期)和214~237 Ma(印支期),相对简单的年龄组合揭示了崖城组沉积时期物源区范围相对有限;微量及稀土元素含量、分布特征和特征参数总体与上陆壳和中国浅海沉积物相近,说明其物源具有相似性。锆石U-Pb年龄记录还揭示崖城组受沉积分选和再循环作用影响不大,其物源主要为来自附近构造隆起的近源沉积,源岩为长英质岩石;物源区构造环境以大陆边缘弧环境为主,同时具有主动大陆边缘特征。结合矿物组合特征,认为琼东南盆地陵南低凸起周缘构造隆起受到了燕山期和印支期构造热事件的影响,形成的酸性岩浆岩为研究区提供了长英质物源,推测本区可能存在变质岩基底。
        Geochemistry and detrital zircon U-Pb dating of sediments of the Yacheng Formation from the deep-water Well LS33 A drilled at the Lingnan Low Uplift, Qiongdongnan Basin have been conducted in this paper, in order to discuss the provenance characteristics of sediments of the Yacheng Formation during their sedimentation. Results show that U-Pb ages of detrital zircons from sediments of the Yacheng Formation range from 95.8 Ma to 387.9 Ma, with two major clusters of 95-106 Ma(Yanshanian) and 214-237 Ma(Indosinian). The relatively simple age groups reveal that sediments of the Yacheng Formation were derived from relatively limited sources during their sedimentation. The contents, distribution features, and characteristic parameters of trace elements and rare earth elements of the sediments are analogous to those of upper continental crust and of Chinese shallow-sea sediments, indicating the similarity in material provenances. The geochemistry and U-Pb ages of detrital zircons of the sediments show that sediments of the Yacheng Formation were limitedly influenced by sedimentary sorting and recycling processes, as they are mainly proximal deposits sourced from the felsic rocks in the adjacent tectonic uplift which are tectonically characterized with dominant continental margin arc and minor active continental margin. Combining with analysis of mineral association characteristics, it is shown that tectonic uplifts surrounding the Lingnan Low Uplift, Qiongdongnan Basin were influenced by Indosinian and Yanshanian tectonic hydrothermal events which produced acidic magmatic rocks for felsic provenance of the sediments in the study area and it is further inferred that the metamorphic rock basement could be existed in the study area.
引文
Allègre C J, Michard G. 1974. Introduction to geochemistry. Berlin: Springer Belousova E, Griffin W L, O'reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622
    Bhatia M R, Crook K A W. 1986. Trace element characteristics of Graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181-193
    Bhatia M R, Taylor S R. 1981. Trace-element geochemistry and sedimentary provinces: A study from the Tasman geosyncline, Australia. Chemical Geology, 33(1-4): 115-125
    Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611-627
    Cullers R L. 1994. The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, U.S.A. Chemical Geology, 113(3-4): 327-343
    Haskin L A, Frey F A, Schmitt R A, Smith R H. 1966. Meteoritic, solar and terrestrial rare-earth distributions. Physics and Chemistry of the Earth, 7: 167-321
    Hu B, Wang L S, Yan W B, Liu S W, Cai D S, Zhang G C, Zhong K, Pei J X, Sun B. 2013. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. Journal of Asian Earth Sciences, 77: 163-182
    Jackson S E, Pearson N J, Griffin W L, Belousova E. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69
    Li X H, Li Z X, Li W X, Wang Y J. 2006. Initiation of the Indosinian orogeny in south China: Evidence for a Permian magmatic arc on Hainan Island. The Journal of Geology, 114(3): 341-353
    Liu X F, Zhang D J, Zhai S K, Liu X Y, Chen H Y, Luo W, Li N, Xiu C. 2015. A heavy mineral viewpoint on sediment provenance and environment in the Qiongdongnan Basin. Acta Oceanologica Sinica, 34(4): 41-55
    Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
    Ludwig K R. 2003. User's manual for Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkely: Berkely Geochronology Center Special Publication, 4: 1-71
    Mao J R, Ye H M, Liu K, Li Z L, Takahashi Y, Zhao X L, Kee W S. 2013. The Indosinian collision-extension event between the South China Block and the Palaeo-Pacific plate: Evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China. Lithos, 172-173: 81-97
    Mclennan S M, Hemming S, Mcdaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers, 284: 21-40
    Mclennan S M, Taylor S R. 1980. Th and U in sedimentary rocks: Crustal evolution and sedimentary recycling. Nature, 285(5767): 621-624
    Mclennan S M, Taylor S R. 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99(1): 1-21
    Mclennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200
    Nasdala L, Hofmeister W, Norberg N, Martinson J M, Corfu F, D?rr W, Kamo S L, Kennedy A, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y S, G?tze J, H?ger T, Kr?ner A, Valley J W. 2008. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265
    Nesbitt H W, Markovics G, Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666
    Prokopiev A V, Toro J, Miller E L, Gehrels G E. 2008. The paleo-Lena River-200 m.y. of transcontinental zircon transport in Siberia. Geology, 36(9): 699-702
    Rudnick R L, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
    Sewell R J, Davis D W, Campbell S D G. 2012. High precision U-Pb zircon ages for Mesozoic igneous rocks from Hong Kong. Journal of Asian Earth Sciences, 43(1): 164-175
    Sircombe K N. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124(1-4): 47-67
    Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542
    Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific Publications
    Turekian K K, Wedepohl K H. 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2): 175-192
    Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273-1305
    Ye H M, Mao J R, Zhao X L, Liu K, Chen D D. 2013. Revisiting Early-Middle Jurassic igneous activity in the Nanling Mountains, South China: Geochemistry and implications for regional geodynamics. Journal of Asian Earth Sciences, 72: 108-117
    白振华, 李胜利, 苏燕, 马行陟, 李茂文. 2011. 琼东南盆地崖城13-1气田渐新统陵三段沉积物源综合分析. 中国地质, 38(2): 384-392
    曹立成, 姜涛, 王振峰, 张道军, 孙辉. 2013. 琼东南盆地新近系重矿物分布特征及其物源指示意义. 中南大学学报(自然科学版), 44(5): 1971-1981
    陈欢庆, 朱筱敏, 张功成, 刘长利, 张亚雄. 2010. 井震结合深水区物源分析:以琼东南盆地深水区古近系陵水组为例. 石油地球物理勘探, 45(4): 552-558
    董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461
    龚再升, 李思田. 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社
    侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492
    黄保家, 李绪深, 王振峰, 李里, 黄义文. 2012. 琼东南盆地深水区烃源岩地球化学特征与天然气潜力. 中国海上油气, 24(4): 1-7
    雷超, 任建业, 裴健翔, 林海涛, 尹新义, 佟殿君. 2011. 琼东南盆地深水区构造格局和幕式演化过程. 地球科学—中国地质大学学报, 36(1): 151-162
    李俊良, 左倩媚, 解习农, 张成, 钟泽红. 2011. 琼东南盆地深水区新近系沉积特征与有利储盖组合. 海洋地质与第四纪地质, 31(6): 109-116
    李娜, 翟世奎, 刘新宇, 陈奎, 姜秀莉, 修淳, 宗统, 刘晓锋, 陈宏言, 王淑杰, 淳明浩. 2014. 琼东南盆地深水区LS33-1-1钻井岩心微量元素地球化学特征及其沉积环境. 海洋地质与第四纪地质, 34(3): 1-12
    李同柱, 代堰锫, 马国桃, 周清. 2016. 扬子陆块西缘乌拉溪花岗岩体SHRIMP锆石U-Pb定年及地质意义. 矿物岩石地球化学通报, 35(4): 743-749
    李绪宣, 钟志洪, 董伟良, 孙珍, 王良书, 夏斌, 张敏强. 2007. 琼东南盆地古近纪裂陷构造特征及其动力学机制. 石油勘探与开发, 33(6): 713-721
    鲁宝亮, 孙晓猛, 张功成, 张斌, 郎元强, 王璞珺. 2011. 南海北部盆地基底岩性地震-重磁响应特征与识别. 地球物理学报, 54(2): 563-572
    毛建仁, 高桥浩, 厉子龙, 中岛隆, 叶海敏, 赵希林, 周洁, 胡青, 曾庆涛. 2009. 中国东南部与日本中-新生代构造-岩浆作用对比研究. 地质通报, 28(7): 844-856
    庞雄, 陈长民. 2007. 南海珠江深水扇系统及油气. 北京: 科学出版社
    秦国权. 1987. 西沙群岛“西永一井”有孔虫组合及该群岛珊瑚礁成因初探. 热带海洋, 6(3): 10-20, 103-105
    沙艳梅. 2009. 等离子体发射光谱法测定土壤和沉积物中6个常量元素结果不确定度评定. 岩矿测试, 28(5): 474-478
    邵磊, 李昂, 吴国瑄, 李前裕, 刘传联, 乔培军. 2010. 琼东南盆地沉积环境及物源演变特征. 石油学报, 31(4): 548-552
    孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335
    孙晓猛, 张旭庆, 张功成, 鲁宝亮, 岳军培, 张斌. 2014. 南海北部新生代盆地基底结构及构造属性. 中国科学(D辑), 44(6): 1312-1323
    王冬兵, 唐渊, 叶春林, 尹福光, 罗亮, 廖世勇. 2017. 青藏高原东缘保山地块沧源新生代中酸性侵入岩年代学、岩石成因与地块挤出. 矿物岩石地球化学通报, 36(2): 245-258
    王英民, 徐强, 李冬, 韩建辉, 吕明, 王永凤, 李卫国, 王海荣. 2011. 南海西北部晚中新世的红河海底扇. 科学通报, 56(10): 781-787
    王振峰, 李绪深, 孙志鹏, 黄保家, 朱继田, 姚哲, 郭明刚. 2011. 琼东南盆地深水区油气成藏条件和勘探潜力. 中国海上油气, 23(1): 7-13, 31
    王子嵩, 刘震, 黄保家, 孙志鹏, 姚哲, 陈宇航, 刘鹏, 王兵. 2014. 琼东南盆地深水区中央坳陷带东部渐新统烃源岩分布及评价. 天然气地球科学, 25(3): 360-371
    席敏红, 周兴海, 王琳, 余学兵. 2014. 琼东南盆地深水区生物礁发育模式研究. 石油实验地质, 36(4): 435-441
    夏邦栋, 于津海, 方中, 王赐银, 楚雪君. 1990. 海南岛海西-印支期花岗岩的地球化学特征及成因. 地球化学, (4): 365-373
    谢才富, 朱金初, 赵子杰, 丁式江, 付太安, 李志宏, 张业明, 徐德明. 2005. 三亚石榴霓辉石正长岩的锆石SHRIMPU-Pb年龄: 对海南岛海西―印支期构造演化的制约. 高校地质学报, 11(1): 47-57
    修淳, 张道军, 翟世奎, 刘新宇, 毕东杰. 2016. 西沙岛礁基底花岗质岩石的锆石U-Pb年龄及其地质意义. 海洋地质与第四纪地质, 36(3): 115-126
    鄢全树, 石学法, 王昆山, 柳小明. 2008. 南沙微地块花岗质岩石LA-ICP-MS锆石U-Pb定年及其地质意义. 地质学报, 82(8): 1057-1067
    张功成, 刘震, 米立军, 沈怀磊, 郭瑞. 2009. 珠江口盆地-琼东南盆地深水区古近系沉积演化. 沉积学报, 27(4): 632-641
    赵民, 张晓宝, 吉利明, 张功成. 2010. 琼东南盆地构造演化特征及其对油气藏的控制浅析. 天然气地球科学, 21(3): 494-502
    赵一阳, 鄢明才. 1994. 中国浅海沉积物地球化学. 北京: 科学出版社
    郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别―苏鲁造山带为例. 科学通报, 53(18): 2129-2152
    钟志洪, 王良书, 李绪宣, 夏斌, 孙珍, 张敏强, 吴国干. 2004. 琼东南盆地古近纪沉积充填演化及其区域构造意义. 海洋地质与第四纪地质, 24(1): 29-36
    周兴海, 余学兵, 王琳, 高兆红. 2013. 琼东南盆地深水区生物礁生长环境及分布特征分析. 海洋石油, 33(4): 1-5
    朱伟林, 钟锴, 李友川, 徐强, 房殿勇. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833-1841

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700