乌拉溪铝质A型花岗岩:松潘—甘孜造山带早燕山期热隆伸展的岩石记录
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wulaxi Aluminous A-type Granite in Western Sichuan,China: Recording Early Yanshanian Lithospheric Thermo-upwelling Extension of Songpan—Garze Orogenic Belt
  • 作者:周家云 ; 谭洪旗 ; 龚大兴 ; 朱志敏 ; 罗丽萍
  • 英文作者:ZHOU Jiayun;TANHG Hongqi;GONG Daxin;ZHU Zhimin;LUO Liping;MLR Key Laboratory of Metallogeny and Mineral Assessment,Insitute of Mineral Resources,Chinese Academy of Geological Sciences;Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences;
  • 关键词:铝质A型花岗岩 ; 热隆伸展 ; 松潘—甘孜造山带 ; 锆石 ; LA-ICP-MS定年
  • 英文关键词:aluminous A-type granite;;thermo-upwelling extension;;Songpan—Garze orogenic belt;;Zircon;;LA-ICP-MS U-Pb dating
  • 中文刊名:DZLP
  • 英文刊名:Geological Review
  • 机构:中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室;中国地质科学院矿产综合利用研究所;
  • 出版日期:2014-03-15
  • 出版单位:地质论评
  • 年:2014
  • 期:v.60
  • 基金:中国博士后科学基金(20090460402);; 中国地质调查局资源远景调查项目(1212011120603)
  • 语种:中文;
  • 页:DZLP201402012
  • 页数:15
  • CN:02
  • ISSN:11-1952/P
  • 分类号:114-128
摘要
乌拉溪岩体位于松潘—甘孜造山带南段,江浪穹隆北部。LA-ICP-MS锆石U-Pb定年获得岩体年龄为159.31±0.9Ma。岩石中出现含钙钠长石和铁叶云母等A型花岗岩典型矿物;岩体具有高SiO2、Na2O和K2O含量,高FeOt/MgO、Ga/Al比值,以及低TiO2、CaO和MgO含量特征;稀土元素配分模式呈右倾海鸥型,Eu负异常明显;微量元素富含Rb、Nb和Ga等高场强元素,原始地幔标准化蛛网图显示出Ba、Sr、P和Ti亏损;岩体中锆石的古核稀少,锆石饱和温度计算显示岩体成岩温度很高(变化在967~984℃之间);岩体还相对富铝,A/CNK=0.97~1.27,分布比较集中,都大于0.95,过碱指数(NK/A=0.74~0.91)较低,均在1之下。以上特征表明乌拉溪二云母花岗岩为铝质A型花岗岩。锆石n(176Hf)/n(177Hf)比值变化于0.282228~0.282749,平均值为0.282586,fLu/Hf为-0.99~-0.10,平均值为-0.90,εHf(t)绝大多数为负值,变化于-15.88~1.77之间,平均值为-3.14,说明岩石形成是壳源物质占主导地位,可能为江浪穹隆核部元古宙变质核杂岩的部分熔融。结合区域构造演化,本文认为乌拉溪二云母花岗岩形成于陆—陆碰撞之后的伸展环境,是甘孜—松潘造山带在燕山早期增厚的地壳因伸展松弛而发生减压熔融的产物。
        The Wulaxi granite is located in the southern region of Songpan—Garze orogenic belt,northern margin of Jianglang dome. The LA-ICP-MS analysis of zircons from the intrusion yield a weighted mean206Pb /238U age of 159. 31 ± 0. 9Ma. Albite and siderophyllite appear in rocks,which are belong to typical minerals of A type granite. The intrusion is characterized by high content of SiO2,Na2O and K2O,high FeOt/ MgO and Ga / Al ratio, and low content TiO2,CaO and MgO. The granite is marked by a"sea-gull"pattern of REE distribution,showing a relatively significant negative Eu anomaly,and rich high field strength elements such as Rb,Nb and Ga et. al, exhibiting remarkably negative Ba,Sr,P and Ti anomalies on the primitive mantle-normalized trace element diagram. The intrusion shows high forming temperature through calculations of zircon saturation temperatures( ranging from 967℃ to 984℃) and lacked ancient nucleus in CL images of zircon. The intrusion also is relatively rich in aluminum with A / CNK = 0. 97 ~ 1. 27( > 0. 95) and NK / A = 0. 74 ~ 0. 91( < 1). These characteristics resemble aluminous A-type granite. In Zircon,n(176Hf) / n(177Hf) = 0. 282228 ~ 0. 282749,average 0. 282586, fLu / Hf=- 0. 99 ~- 0. 10,average- 0. 97,most εHf( t) are negative(-15. 88 ~1. 77),average-3. 14,which indicates that the rock dominantly come from the crust,and probably originated from the partial melting of Proterozoic Metamorphic core complex in Jianglang dome. Combined with regional tectonic evolution,We suggest that the Wulaxi granite formed in an extensional setting after the continent—continent collision,and originated from the early Yanshanian decompressing melt of the thickening crust because of extensing relaxation after collision in the Songpan—Garze orogenic belt.
引文
蔡宏明,张宏飞,徐旺春,时章亮,袁洪林.2010.松潘带印支期岩石圈折沉作用新证据:来自火山岩岩石成因的研究.中国科学(地球科学),40(11):1518~1532.
    陈国能,洛尼.2009.花岗岩成因:原地重熔与地壳演化.武汉:中国地质出版社,136~169.
    戴宗明,孙传敏,张宽忠,李振江.2011a.松潘甘孜地块四姑娘山花岗岩锆石U-Pb年代学证据及与汶川地震的关系.中国地质,38(3):623~636.
    戴宗明,孙传敏,张宽忠,李振江.2011b.青藏高原东缘四姑娘山花岗岩地球化学特征和锆石U-Pb年代学证据.地质科技情报,30(4):1~14.
    洪大卫,王式洸,韩宝福,靳满元.1995.碱性花岗岩的构造环境分类鉴别标志.中国科学(B辑),25(4):418~426.
    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MCICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2594~2604.
    侯可军,李延河,田有荣.2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,2009,28(4):481~492.
    胡健民,孟庆任,石玉若,渠洪杰.2005.松潘—甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报,21(5):867~880.
    华仁民,陈培荣,张文兰,刘晓东,陆建军,林锦富,姚军明,戚华文,张展适,顾晟彦.2003.华南中、新生代与花岗岩类有关的成矿系统.中国科学,33(4):335~343.
    李建康,杨学俊,王登红,熊昌利,付小方.2009.川西北花岗岩的冷却过程及其对区域成矿的制约.地质学报,83(8):1140~1149.
    李小伟,莫宣学,赵志丹,朱弟成.2010.关于A型花岗岩判别过程中若干问题的讨论.地质通报,29(2~3):278~285.
    李同柱,冯孝良,张惠华,唐高林,吴振波,夏祥标.2010.四川里伍铜矿含矿岩系地球化学特征及成因分析.地质与勘探,46(5):921 ~930.
    梁清玲,江思宏,刘翼飞.2013.冀北东猴顶A型花岗岩成因:岩石地球化学、锆石U-Pb年代学及Sr—Nd—Pb—Hf同位素制约.地质论评,59(6):1119~1130.
    刘昌实,陈小明,陈培荣,王汝成,胡欢.2003.A型岩套的分类、判别标志和成因.高校地质学报,9(4):573~591.
    路远发.2004.Geokit:一个用VBA构建的地球化学工具软件包.地球化学,33(5):459~564.
    卢仁,梁涛,白凤军,卢欣祥.2013.豫西磨沟正长岩LA-ICP-MS锆石U-Pb年代学及Hf同位素.地质论评,59(2):355~368.
    马铁球,王先辉,柏道远.2004.锡田含W、Sn花岗岩体的地球化学特征及其形成构造背景.华南地质与矿产,1:11~16.
    邱检生,王德滋,蟹泽聪史,Brent I A M M cInnes.2000.福建沿海铝质A型花岗岩的地球化学及岩石成因.地球化学,29(4):313~321.
    四川省地质矿产局.1:20万金矿幅区域地质调查报告(矿产报告).1974,1~50.
    时章亮,张宏飞,蔡宏明.2009.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义.地球科学,34(4):569~584.
    宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26~30.
    舒全安,王永基.1984.在扬子板块基底变质岩系中找白钨矿的初步分析.地质与勘探,10:2~9.
    万传辉,袁静,李芬香,鄢圣武.2011.松潘—甘孜造山带南段晚三叠世兰尼巴和羊房沟花岗岩岩石学、地球化学特征及成因.岩石矿物学杂志,30(2):185~198.
    王强,赵振华,熊小林.2000.桐柏—大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志,19(4):297~306.
    吴锁平,王梅英,戚开静.2007.A型花岗岩研究现状及其述评.岩石矿物学杂志,26(1):57~65.
    许志琴,侯立玮,王宗秀.1992.中国松潘—甘孜造山带的造山过程.北京:地质出版社:1~6.
    徐夕生、邱检生.2010.火成岩岩石学.北京:科学出版社,2010:207~235.
    颜丹平,宋鸿林,傅昭仁.1999.扬子地台西缘造山前的区域伸展作用研究.地学前缘,6(4):352.
    杨高学,李永军,司国辉,吴宏恩,金朝.2010.新疆贝勒库都克铝质A型花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学及其成因.地质学报,84(12):1759~1769.
    叶会寿,毛景文,徐林刚,高建京,谢桂清,李向前,何春芬.2008.豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征.地质论评,54(5):699~711.
    袁静,肖龙,万传辉,高睿.2011.松潘—甘孜南部放马坪—三岩龙花岗岩的成因及其构造意义.地质学报,2011,85(2):195~206.
    张旗,冉皞,李承东.2012.A型花岗岩的实质是什么?.岩石矿物学杂志,31(4):621~626.
    赵永久,袁超,周美夫,颜丹平,龙晓平,李继亮.2007a.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘—甘孜地体基底性质的制约.岩石学报,23(5):995~1006.
    赵永久,袁超,周美夫,颜丹平,龙晓平,蔡克大.2007b.松潘甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约.地球化学,36(2):139~152.
    朱初金,陈骏,王汝成,陆建军,谢磊等.2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带.高校地质学报,14(4):474~484.
    Andersen T.2002 Correction of common lead in U-Pb analyses that do not report 204Pb.Chemical Geology,,192(1~2):59~79.
    Chappell B W and White A J R.1992.I-and S-type granites in the Lachlan Fole Belt.Transactions of the Royal Society of Edinburgh:Earth Sciences,83:1~26.
    Chu Nna-Chin,Taylor R N,Chavagnac V,Nesbitt R W,Boells R M,Milton J A,Gennan C R,Bayon G and Burton K.2002.Hf isotope ratio analysis using mult-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections.Journal of Analytical Atomic Spectrometry,17(12):1567~1574.
    Collins W J,Beams S D,White A J R,et al.1982.Nature and origin of A-type granites with particular reference to south-eastern Australia.Contributions to Mineralogy and Petrology.80(2):189~200.
    Eby G N.1990.The A-type granitoids:a review of their occurrence and chemical characteristics and speculations on their petrogenesis.Lithos,26(1~2):115~134.
    Eby G N.1992.Chemical subdivision of the A-type granitoids Petrogenetic and tectonic implication.Geology,20:641~644.
    Elhlou S,Belousova E,Griffin W L.Pearson N J and O’Reilly S Y.2006.Trace element and isotopic composition of GJ-red zircon standard by laser ablation.Geochimica et Cosmochimica Acta,70(18)suppl:A158.
    Huang M,Maas R,Buick I S,et al.2003.Crustal response to continental collisions between the Tibet,Indian,South China and North China blocks:Geochronological constraints from the Songpan—Garze orogenic belt,western China.Journal of Metamorphic Geology,21(3):223~240.
    King P L,White A J R,Chappell B W,et al.1997.Characterization and origin of alumious A-type granites from the Lachlan fold belt,Southeastern Australia.Journal of Petrology,38(3):371~391.
    Kinny P D,Maas R.2003.Lu-Hf and Sm-Nd isotope systems in zircon.Reviews in Mineralogy and Geochemistry,53(1):327~341.
    Leloup P H,Ricard Y,Battaglia J,et al.1999.Shear heating in continental strike-slip shear zones:model and field examples.Geophysical Journal International,136(1):19~40.
    Liu Yongsheng,Hu Zhaochu,Gaoshan,Gunther D,Xu Juan,Gao Changgui and Chen Haihong.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1~2):34~43.
    Loiselle M C,Wones D R.1979.Characteristics and origin of anorogenic granite.Geological Society.America Abstracts with Programs,11:468.
    Ludwig K R.2003.User’s Manual for Isotopic 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley:Berkeley Geochronology Center.Special Publication No.4,25~32.
    Maniar P D and Piccoli P M.1989.Tectonic discrimination of granitoids.Geological Society of America Bulletin,101(5):635~643.
    Masberg H P,Mihm D and Jung S.2005.Major and trace element and isotopic(Sr,Nd,O)constraints for Pan-African crustally contam grey granite geneisses from the southern KaoKo belt,Narnibial Lithos,84:25~50.
    Newberry R J and Swanson S E.1986.Scheelite skarn granitoids:Anevaluation of the roles of magmatic source and process.Ore Geology Reviews,1(1):57~81.
    Patio Douce A E,Johnston A D.1991.Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous gr anulites.Contribution Mineral Petrol.107(2):202~218.
    Patio Douce A E,Beard J S.1995.Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar.Petrology,36(3):707~738.
    Patio Douce A E.1999.What do experiments tell us about relative contributions of crust and mantle to the origin of granitic magmas.In:Carstro A.et al.eds.Understanding Granites:Intergrating New and Classic Techeniques.London:Geological Society,Special Pullications,168:55~75.
    Pearce J A,Harris N B W,Tindle A G.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,25(4):956~983.
    Rajesh H M.2000.Characterization and origin of a compositionally zoned aluminous A-type granite from South India.Geological Magazine,137(3):291~318.
    Roger F,Malavieille J,Leloup P H,et al.2004.Timing of granite emplacement and cooling in the Songpan—Garze fold belt(Eastern Tibetan Plateau)with tectonic implications.Journal of Asian Earth,22 (5):465~481.
    Skjerlie K P,Johnston A D.1996.Vapour-absent melting from 10 to 20kbar of crustal rocks that contain multiple hydrous phases:Implications for anatexis in the deep to very deep continental crust and active continental margins.Journal of Petrology,37(3):661~691.
    Sun S S,McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders A D,Norry M J,eds.Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42:313~345
    Taylor S R,MeLennan S M.1985.The continental crust:Its composition and evolution:an examination of the geochemical record preserved in sedimentary rocks.Oxford:Blackwell Oxford,1~312.
    Turner S P,Foden J D,Morrison R S.1992.Derivation of some A-type magmas by fractionation of basaltic magama:an example from the Padthaway Ridge,South Australia.Lithos,28(2):151~179.
    Watson E B,Harrison T M.1983.Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types.Earth and Planetary Science Letters,64(2):295~304.
    Whalen J B,Currie K L,Chappell B W.1987.A-type granites:geochemical characteristics,dirimination and petrogenesis.Contributions to Mineralogy and Petrology.95(4):407~419.
    White A J R and Chappell B W.1997.Ultrametamorphism and granitoid genesis[J].Tectonophysics,43(1~2):7~22.
    Xiao Long and Clemens J D.2007.Origin of potassic(C-type)adakite magmas:experimental and field constraints.Lithos,95(3~4):399~414.
    Zhang Hongfei,Zhang Li,Harris N,et al.2006.U-Pb zircon ages,geochemical and isotopic compositions of granitoids in Songpan—Ganze Fold Blet,Eastern Tibetan Platean:constraints on petrogenesis and tectonic evolution of the basement.Contribution Mineral Petrol,152(1):75~88.
    Zhang Hongfei,Parrish R and Zhang Li.2007.A-type granite and adakitic magmatism association in Songpan—Garze Fold Belt,eastern Tibetan Plateau:implication for lithospheric delamination.Lithos,97(3~4):323~335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700