基于突变理论的高压岩溶隧道掌子面稳定性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability analysis of tunnel face in high-pressure karst tunnels based on catastrophe theory
  • 作者:王志杰 ; 高靖遥 ; 张鹏 ; 关笑 ; 季晓峰
  • 英文作者:WANG Zhi-jie;GAO Jing-yao;ZHANG Peng;GUAN Xiao;JI Xiao-feng;Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University;
  • 关键词:高压岩溶隧道 ; 掌子面破坏特征 ; 相似模型试验 ; 突变模型 ; 压力扩散角
  • 英文关键词:high-pressure karst tunnel;;collapse of tunnel face;;similarity model test;;catastrophe model;;pressure diffusion angle
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:西南交通大学交通隧道工程教育部重点实验室;
  • 出版日期:2018-08-15 14:22
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:v.41;No.332
  • 基金:中央高校基本科研业务专项资金项目(SWJTU11ZT33);; 教育部创新团队发展计划项目(IRT0955)
  • 语种:中文;
  • 页:YTGC201901014
  • 页数:9
  • CN:01
  • ISSN:32-1124/TU
  • 分类号:101-109
摘要
为研究马蹄形隧道前方存在正交高压溶洞时中间岩墙的承压能力和破坏模式,在考虑溶洞位置和尺寸对中间岩墙稳定性影响的基础上,建立掌子面失稳破坏的圆锥台模型,并通过势能判据的尖点突变理论得到掌子面失稳时的溶洞临界压力。同时开展室内模型试验,揭示高压溶洞与隧道正交时中间岩墙的破坏特征,并结合数值计算对掌子面破坏模型进行了补充验证。研究结果表明:溶洞临界压力随中间岩墙厚度、围岩等级的增大而增加,随溶洞尺寸的增大而减小,且围岩弹性模量的变化对中间岩体的稳定性有显著影响;中间岩墙厚度超过0.35倍洞径后,溶洞已不是造成掌子面破坏的主要因素;引入压力扩散角?描述溶洞与隧道处于不同正交位置时中间岩墙的破坏形态,发现溶洞临界压力与靠近溶洞一侧的隧道边界曲率正相关。破坏模型贴近工程实际,所得结果与试验基本吻合,可为高压岩溶隧道的设计与施工提供参考。
        In order to study the bearing capacity and failure mode of the intermediate rock wall in the presence of orthogonal high-pressure caverns in front of horseshoe tunnels, a frustum model for the instability of tunnel face is established considering the influences of the location and size of the cavern on the stability of the intermediate rock wall. Based on the cusp catastrophe theory of the potential energy criterion, the critical pressure can be predicted. At the same time, similar model tests are conducted to reveal the destruction characteristics of the intermediate rock wall when the high-pressure cavern are intersected with the tunnel. The failure model for the tunnel face is additionally verified. The results show that the critical pressure of karst cavern increases with the thickness of the intermediate rock wall and the grade of the surrounding rock and decreases with the increase of the size of karst cavern. The change of the elastic modulus of the rock has a significant effect on the stability of the intermediate rock. When the thickness of the intermediate rock wall exceeds 0.35 times the hole diameter, the cavern is not the main factor causing the failure of the face. The pressure spread angle ? is introduced to describe the destruction pattern of the intermediate rock wall when the cavern and the tunnel are in different orthogonal positions, and founds that the critical pressure of the cave is positively correlated with the curvature of the tunnel boundary near the side of the cavern. The results of the proposed model are basically consistent with the test ones, which can provide reference for the design and construction of high-pressure karst tunnels.
引文
[1]周宗青,李术才,李利平,等.岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J].岩土力学,2013,34(3):818-826.(ZHOU Zong-qing,LI Shu-cai,LI Li-ping,et al.Attribute recognition model of fatalness assessment of water inrush in karst tunnels and its application[J].Rock and Soil Mechanics,2013,34(3):818-826.(in Chinese))
    [2]王遇国.岩溶隧道突水灾害与防治研究[D].北京:中国铁道科学研究院,2010.(WANG Yu-guo.Study on scourge and prevention of karst tunnel water inrush[D].Beijing:China Academy of Railway Sciences,2010.(in Chinese))
    [3]康勇,杨春和,张朋.浅埋岩溶隧道灾变机制及其防治[J].岩石力学与工程学报,2010,29(1):149-154.(KANG Yong,YANG Chun-he,ZHANG Peng.Disaster induced mechanism and its treatment in shallow-buried karst tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(1):149-154.(in Chinese))
    [4]张庆松,李术才,韩宏伟,等.岩溶隧道施工风险评价与突水灾害防治技术研究[J].山东大学学报(工学版),2009,39(3):106-110.(ZHANG Qin-song,LI Shu-cai,HANHong-wei,et al.Study on risk evaluation and water inrush disaster preventing technology during construction of karst tunnels[J].Journal of Shandong University(Engineering Science),2009,39(3):106-110.(in Chinese))
    [5]赵明阶,敖建华,刘绪华,等.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2):213-217.(ZHAO Ming-jie,AO Jian-hua,LIUXu-hua,et al.Model testing research on influence of karst cave sizeon stability of surrounding rockmasses during tunnel construction[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(2):213-217.(in Chinese))
    [6]郭佳奇,乔春生.岩溶隧道掌子面突水机制及岩墙安全厚度研究[J].铁道学报,2012,34(3):105-111.(GUO Jiao-qi,QIAO Chun-sheng.Study on water inrush mechanism and safe thickness of rock wall of karst tunnel face[J].Journal of the China Railway Society,2012,34(3):105-111.(in Chinese))
    [7]郭佳奇,乔春生,曹茜.侧部高压富水溶洞与隧道间岩柱安全厚度的研究[J].现代隧道技术,2010,47(6):10-16.(GUO Jia-qi,QIAO Chun-shen,CAO Qian.Study on safe thickness of rock wall between high pressure water cave and tunnel[J].Modern Tunnelling Technology,2010,47(6):10-16.(in Chinese))
    [8]莫阳春.高水压充填型岩溶隧道稳定性研究[D].成都:西南交通大学,2009.(MO Yang-chun.Stability research on high water pressure filled karst caves tunnel[D].Chengdu:Southwest Jiaotong University,2009.(in Chinese))
    [9]宋战平,綦彦波,李宁.顶部既有隐伏溶洞对圆形隧道稳定性影响的数值分析[J].岩土力学,2007,28(增刊1):485-489.(SONG Zhan-ping,QI Yan-bo,LI Ning.Numerical experimentational research on concealed karst cave’s influence on circular tunnel stability[J].Rock and Soil Mechanics,2007,28(S1):485-489.(in Chinese))
    [10]宋战平.隐伏溶洞对隧道围岩支护结构稳定性的影响研究[D].西安:西安理工大学,2006.(SONG Zhan-ping.Research on the influence of concealed karst caverns upon the stability of tunnel and its support structure[D].Xi'an:Xi'an University of Technology,2006.(in Chinese))
    [11]孙谋,刘维宁.高风险岩溶隧道掌子面突水机制研究[J].岩土力学,2011,32(4):1175-1180.(SUN Mou,LIUWei-ning.Research on water inrush mechanism induced by karst tunnel face with high risk[J].Rock and Soil Mechanics,2011,32(4):1175-1180.(in Chinese))
    [12]姜德义,任松,刘新荣,等.岩盐溶洞顶板稳定性突变理论分析[J].岩土力学,2005,26(7):1099-1103.(JIANGDe-yi,REN Song,LIU Xin-rong,et al.Stability analysis of rock salt cavern with catastrophe theory[J].Rock and Soil Mechanics,2005,26(7):1099-1103.(in Chinese))
    [13]潘东东,李术才,许振浩,等.岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J].岩土工程学报,2018,40(5):826-836.(PAN Dong-dong,LI Shu-cai,XU Zhen-hao,et al.A model test and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J].Chinese Journal of Geotechnical Engineering,2018,40(5):826-836.(in Chinese))
    [14]李术才,袁永才,李利平,等.钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J].岩土工程学报,2015,37(2):313-320.(LI Shu-cai,YUAN Yong-cai,LILi-ping,et al.Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J].Chinese Journal of Geotechnical Engineering,2015,37(2):313-320.(in Chinese))
    [15]赵明华,蒋冲,曹文贵.岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究[J].岩土工程学报,2007,29(11):1618-1622.(ZHAO Ming-hua,JIANG Chong,CAOWen-gui.Study on bearing capacity of rock-socked piles and safe thickness of cave roofs in karst region[J].Chinese Journal of Geotechnical Engineering,2007,29(11):1618-1622.(in Chinese))
    [16]付成华,陈胜宏.基于突变理论的地下工程洞室围岩失稳判据研究[J].岩土力学,2008,29(1):167-172.(FUCheng-hua,CHEN Sheng-hong.Study on instability criteria of surrounding rock of underground engineering cavern based on catastrophe theory rock and soil mechanics[J].Rock and Soil Mechanics,2008,29(1):167-172.(in Chinese))
    [17]何平,赵子都.突变理论及其应用[M].大连:大连理工大学出版社,1989.(HE Ping,ZHAO Zi-du.Mutation theory and its application[M].Dalian:Dalian University of Technology Press,1989.(in Chinese))
    [18]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.(YUAN Wen-zhong.Similar theoryand statics model test[M].Chengdu:Southwest Jiaotong University Press,1998.(in Chinese))
    [19]雷勇,尹君凡,陈秋南,等.基于极限分析法的溶洞顶板极限承载力研究[J].岩土力学,2017,38(7):1926-1932.(LEI Yong,YIN Jun-fan,CHEN Qiu-nan,et al.Determination of ultimate bearing capacity of cave roof using limit analysis method[J].Rock and Soil Mechanics,2017,38(7):1926-1932.(in Chinese))
    [20]杨子汉,杨小礼,许敬叔,等.基于上限原理的两种岩溶隧道岩墙厚度计算方法[J].岩土力学,2017,38(3):801-809.(YANG Zi-han,YANG Xiao-li,XU Jing-shu,et al.Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem[J].Rock and Soil Mechanics,2017,38(3):801-809.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700