液力—磁耦合传动岩屑清洁装置的磁扭矩数值优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A magnetic torque optimization method for a hydraulic–magnetic coupling-drive cuttings cleaning tool
  • 作者:孙晓峰 ; 乔波 ; 闫立鹏 ; 陈烨 ; 张克博 ; 曲晶瑀
  • 英文作者:Sun Xiaofeng;Hu Qiaobo;Yan Lipeng;Chen Ye;Zhang Kebo;Qu Jingyu;School of Petroleum Engineering, Northeast Petroleum University;Sinopec Petroleum Engineering Research Institute;
  • 关键词:水平井钻井 ; 岩屑 ; 清洁工具 ; 液力—磁耦合 ; 永磁铁 ; 磁扭矩 ; 磁通密度 ; 数值优化
  • 英文关键词:Horizontal drilling;;Cuttings;;Cleaning tool;;Hydraulic–magnetic coupling;;Permanent magnet;;Magnetic torque;;Magnetic flux density;;Numerical optimization
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:东北石油大学石油工程学院;中国石油化工股份有限公司石油工程技术研究院;
  • 出版日期:2019-01-29 16:50
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.303
  • 基金:国家科技重大专项课题“复杂结构丛式井钻井水力学与井眼清洁配套技术”(编号:2017ZX05009-003);; 国家自然科学基金面上项目“液力—磁耦合自旋转井眼清洁工具的旋转传动机理研究”(编号:51674087)
  • 语种:中文;
  • 页:TRQG201901016
  • 页数:9
  • CN:01
  • ISSN:51-1179/TE
  • 分类号:103-111
摘要
钻井过程中水平井段岩屑携带困难、易形成岩屑床,因而研发了一种新型液力—磁耦合传动岩屑清洁工具,但对其磁扭矩传动影响机制、最佳磁路结构及磁铁配置等尚不清楚。为此,应用有限元数值模拟方法分析了磁路结构和永磁铁几何尺寸对磁扭矩的影响规律,数值模拟和室内实验的结果表明:(1)通过提高气隙磁通密度,降低磁路磁阻,增加静磁能的储积等方式可以提高磁扭矩的传递效率;(2)磁扭矩随磁偶对数的增加呈先增大后减小的趋势,12对磁偶的磁扭矩达到最大值;(3)对工具有效断面磁铁覆盖面积和磁体厚度这两种因素制约下的磁铁用量的耦合,得到永磁铁厚度为8.4 mm、工具有效断面上磁铁覆盖面积为71%时,单位体积磁铁产生的磁扭矩为最高;(4)室内实验结果与数值模拟计算结果绝对误差小于17%,能够满足工程计算对精度的要求。结论认为,所建立的数值模拟模型较为合理,可作为该工具结构优化分析的技术手段。
        In the process of well drilling, cuttings carrying is difficult in the horizontal section, and cuttings beds tend to form easily. In view of this, a hydraulic–magnetic coupling-drive cuttings cleaning tool is newly developed, but its magnetic torque transmission mechanism, optimum magnetic circuit structure and magnet layout are rarely researched. In this paper, the influence laws of magnetic circuit structure and permanent magnet dimension on the magnetic torque were analyzed by using finite-element numerical simulation method. And the following research results were obtained on the basis of numerical simulation and experimental study. First, the transmission efficiency of magnetic torque can be enhanced by increasing the magnetic flux density in the air gap, decreasing the magnetic circuit reluctance or increasing the magnetostatic energy. Second, the magnetic torque increases first and then decreases as the number of polepair increases. And it reaches the maximum value when the number of pole-pair is 12. Third, based on the coupling of the magnet volume under two constraints, i.e., the coverage area of permanent magnet on the tool's effective cross section and the magnet thickness, the thickness of permanent magnet is 8.4 mm. And the magnetic torque on the unit volume of magnet reaches the maximum value when the coverage area of permanent magnet on the tool's effective cross section is 71%. Fourth, the absolute error between the experimental result and the numerical simulation result is less than 17%. It is indicated that the numerical simulation model can satisfy the required engineering calculation accuracy. In conclusion, the numerical simulation model established in this paper is rational and can be used as a technical method for optimizing the structure of this newly-developed tool.
引文
[1]杨川.长水平段水平井钻柱摩阻测量与分析技术[D].成都:西南石油大学,2014.Yang Chuan.Drill string friction measurement and analysis technology for horizontal well in long horizontal section[D].Chengdu:Southwest Petroleum University,2014.
    [2]杨文楼.水平井定向段施工托压现象原因分析及应对措施[J].石化技术,2015,22(2):114.Yang Wenlou.Analysis and solutions of backing pressure generated from directional drilling in horizontal wells[J].Petrochemical Industry Technology,2015,22(2):114.
    [3]徐小龙.大位移井井眼清洁评价及水力参数优选研究[D].青岛:中国石油大学(华东),2013.Xu Xiaolong.Hole cleaning evaluation and hydraulics optimization on extended-reach wells[D].Qingdao:China University of Petroleum(East China),2013.
    [4]Samuel R.Adjustable hole cleaning device:US.Patent7051821B2[P].2006[2018-07-03].https://patents.google.com/patent/US7051821B2/en.
    [5]Tolle GC.Method for improving drill cuttings transport from a wellbore:US.Patent 4844182A[P].1989[2018-07-03].https://patents.google.com/patent/US4844182A/en.
    [6]Swielik G.Cutting bed impeller:US.Patent 6223840B1[P].2001.https://patents.google.com/patent/US6223840B1/en.
    [7]Swielik G.Cutting bed impeller:US.Patent 5937957A[P].1999[2018-07-03].https://patents.google.com/patent/US5937957A/en.
    [8]Puymbroeck LV,Williams H&Bayne C.Increasing drilling performance for ERD wells using new generation hydro-mechanical drill pipe[C]//Unconventional Resources Technology Conference,12-14 August 2013,Denver,Colorado,USA.DOI:http://www.aade.org/app/download/7120377804/AADE-13-FTCE-01.pdf.
    [9]Boulet JG,Shepherd JA,Batham J&Elliott LR.Improved hole cleaning and reduced rotary torque by new external profile on drilling equipment[C]//IADC/SPE Drilling Conference,23-25February 2000,New Orleans,Louisiana,USA.DOI:https://doi.org/10.2118/59143-MS.
    [10]Ahmed RM,Sagheer M,Takah N,Majidi R,Yu Mengjiao,Miska SZ,et al.Experimental studies on the effect of mechanical cleaning devices on annular cuttings concentration and applications for optimizing ERD systems[C]//SPE Annual Technical Conference and Exhibition,19-22 September 2010,Florence,Italy.DOI:https://doi.org/10.2118/134269-MS.
    [11]Puymbroeck LV&Bachiri KE.New generation drill pipe to increase drilling performance in ERD wells[C]//SPE/IADC Middle East Drilling Technology Conference&Exhibition,7-9 October2013,Dubai,UAE.DOI:https://doi.org/10.2118/166775-MS.
    [12]Puymbroeck LV.Increasing drilling performance using hydro-mechanical hole cleaning devices[C]//SPE Unconventional Gas Conference and Exhibition,28-30 January 2013,Muscat,Oman.DOI:https://doi.org/10.2118/164005-MS.
    [13]Reinhardt WR,Williamson RN,Eaton LF&Actis SC.Magnolia deepwater development-striving for best in class drilling performance[C]//SPE/IADC Drilling Conference,23-25 February 2005,Amsterdam,The Netherlands.DOI:https://doi.org/10.2118/92439-MS.
    [14]Hapiztuddin M,Raymond E,Jean B&Anthony M.Maximizing drilling efficiency in Bunga-Kekwa's high-angle wells[J].World Oil.2008(229):4-10.
    [15]王智锋.复杂结构井岩屑床清除技术[J].石油钻采工艺,2009,31(1):102-104.Wang Zhifeng.Cutting bed clearage of complex structural wells[J].Oil Drilling&Production Technology,2009,31(1):102-104.
    [16]王冠.常用井下动力钻具简析[J].中国石油和化工标准与质量,2017,37(9):128-129.Wang Guan.Analysis of commonly used downhole power drilling tools[J].China Petroleum and Chemical Standard and Quality,2017,37(9):128-129.
    [17]孙晓峰,闫铁,李显义,柏明星,刘维凯,陈烨.一体式叶片液力-磁传动井眼清洁工具:中国,ZL201510078623.5[P].2015-05-27[2018-07-01].http://epub.sipo.gov.cn/patentoutline.action.Sun Xiaofeng,Yan Tie,Li Xianyi,Bai Mingxing,Liu Weikai&Chen Ye.Integrated blade hydraulic-magnetic drive wellbore cleaning tool:China,ZL201510078623.5[P].2015-05-27[2018-07-01].http://epub.sipo.gov.cn/patentoutline.action.
    [18]孙晓峰,闫铁,刘维凯,柏明星,陈烨,李显义.分体式叶片液力-磁传动井眼清洁工具:中国,ZL201410078585.3[P].2015-06-03[2018-07-03].http://epub.sipo.gov.cn/patentoutline.action.Sun Xiaofeng,Yan Tie,Liu Weikai,Bai Mingxing,Chen Ye&Li Xianyi.Split blade hydraulic-magnetic drive wellbore cleaning tool:China,ZL201410078585.3[P].2015-06-03[2018-07-03].http://epub.sipo.gov.cn/patentoutline.action.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700