具有主动腰关节的四足机器人在间歇性对角小跑步态下的姿态平衡控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Posture Balance Control of the Quadruped Robot with an Active Waist Joint during Intermittent Trot Locomotion
  • 作者:郑楚婷 ; 宋光明 ; 乔贵方 ; 宋爱国 ; 韦中
  • 英文作者:ZHENG Chuting;SONG Guangming;QIAO Guifang;SONG Aiguo;WEI Zhong;School of Instrument Science and Engineering, Southeast University;School of Automation, Nanjing Institute of Technology;
  • 关键词:轮腿式机器人 ; 间歇性小跑步态 ; 偏航关节 ; 零力矩点 ; 步态稳定性
  • 英文关键词:wheel-legged robot;;intermittent trot gait;;yaw joint;;zero-moment point;;gait stability
  • 中文刊名:JQRR
  • 英文刊名:Robot
  • 机构:东南大学仪器科学与工程学院;南京工程学院自动化学院;
  • 出版日期:2016-11-15
  • 出版单位:机器人
  • 年:2016
  • 期:v.38
  • 基金:国家自然科学基金(61375076);; 江苏省“六大人才高峰”高层次人才选拔培养项目(WLW-010)
  • 语种:中文;
  • 页:JQRR201606004
  • 页数:8
  • CN:06
  • ISSN:21-1137/TP
  • 分类号:32-39
摘要
提出一种由前轮腿模块、后轮腿模块和主动腰关节模块组成的轮腿式机器人.研究发现,拥有刚性腰关节模块的轮腿式机器人在以对角小跑步态行进的过程中处于振荡的非平衡态.为此,借鉴四足动物生物学研究成果以及基于ZMP(零力矩点)的实时性摆动补偿轨迹规划,本文利用主动腰关节模块来提高轮腿式机器人在间歇性小跑步态下的稳定性.对上述的轮腿式机器人进行运动学和动力学建模,通过仿真实验证实了添加偏航关节的规律性摆动可以大幅减少和改善机体的倾斜振荡,机体的倾斜幅度由原先的62.2 mm降至12.8 mm,明显提升了机器人在间歇性小跑步态下的运动稳定性.
        A wheel-legged robot is proposed, which is comprised of the front wheel-leg module, the rear wheel-leg module,and the active waist joint. The research indicates that the locomotion of the wheel-legged robot with the rigid waist joint in trot gait is unstable with violent vibration. According to the biological study in quadrupeds and ZMP(zero moment point) based real-time trajectory planning with sway compensation, a control method using the active waist joint is proposed to improve the locomotion stability in intermittent trot gait. Kinematic and dynamic models of the wheel-legged robot are developed.Experimental results show that the addition of the regular swinging function for the yaw joint can dramatically reduce the amplitude of the body vibration from 62.2 mm to 12.8 mm and remarkably improve the locomotion stability of the robot in intermittent trot gait.
引文
[1]Tadakuma K,Tadakuma R,Maruyama A,et al.Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2010:3358-3365.
    [2]Huang K J,Chen S C,Chou Y C,et al.Experimental validation of a leg-wheel hybrid mobile robot quattroped[C]//IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2011:2976-2977.
    [3]Chen S C,Huang K J,Li C H,et al.Trajectory planning for stair climbing in the leg-wheel hybrid mobile robot quattroped[C]//IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2011:1229-1234.
    [4]Vukobratovic M,Stepanenko J.On the stability of anthropomorphic systems[J].Mathematical Biosciences,1972,15(1-2):1-37.
    [5]Yoneda K,Hirose S.Dynamic and static fusion gait of a quadruped walking vehicle on a winding path[J].Advanced Robotics,1994,9(2):125-136.
    [6]Kurazume R,Yoneda K,Hirose S.Feedforward and feedback dynamic trot gait control for quadruped walking vehicle[J].Autonomous Robots,2002,12(2):157-172.
    [7]刘飞,陈小平.使用零力矩点轨迹规划的四足机器人步态进化方法[J].机器人,2015,32(3):400-404.Liu F,Chen X P.Gait evolving method of quadruped robot using zero-moment point trajectory planning[J].Robot,2015,32(3):400-404.
    [8]Zhang X L,Yu H B,Liu B Y,et al.A bio-inspired quadruped robot with a global compliant spine[C]//IEEE International Conference on Robotics and Biomimetics.Piscataway,USA:IEEE,2013:1312-1316.
    [9]Zhao Q,Nakajima K,Sumioka H,et al.Spine dynamics as a computational resource in spine-driven quadruped locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2013:1445-1451.
    [10]Auffenberg W.The epaxial musculature of Siren,Amphiuma,and Necturus i(Amphibia)[J].Inter Faculty,2012,3(2):343-349.
    [11]Li D D,Zhang X L,Zhou K L,et al.Design and evaluation of the compliant structure for a quadruped robot[J].Artificial Intelligence and Robotics Research,2013,2(1):1-9.
    [12]Park S H,Kim D S,Lee Y J.Discontinuous spinning gait of a quadruped walking robot with waist-joint[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2005:2744-2749.
    [13]Tsujita K,Kobayashi T,Inoura T,et al.Gait transition by tuning muscle tones using pneumatic actuators in quadruped locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,USA:IEEE,2008:2453-2458.
    [14]So B R,Ryu H T,Yi B J.ZMP-based motion planning algorithm for kinematically redundant manipulator standing on the ground[J].Intelligent Service Robotics,2015,8(1):35-44.
    [15]Li J M,Wang J G,Yang S X,et al.Gait planning and stability control of a quadruped robot[J].Computational Intelligence and Neuroscience,2016:No.9853070.
    [16]Castano J A,Li Z B,Zhou C X,et al.Dynamic and reactive walking for humanoid robots based on foot placement control[J].International Journal of Humanoid Robotics,2016,13(2):No.1550041.
    [17]Suzumura A,Fujimoto Y.Real-time motion generation and control systems for high wheel-legged robot mobility[J].IEEE Transactions on Industrial Electronics,2014,61(7):3648-3659.
    [18]Yoneda K,Iiyama H,Hirose S.Intermittent trot gait of a quadruped walking machine dynamic stability control of an omnidirectional walk[C]//IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,1996:3002-3007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700