光子带隙超材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Photonic-Bandgap Metamaterials
  • 作者:董国艳 ; 乔鹏 ; 李振飞
  • 英文作者:DONG Guoyan;QIAO Pengwu;LI Zhenfei;School of Optoelectronics,University of Chinese Academy of Sciences;
  • 关键词:光子带隙 ; 光子晶体 ; 超材料 ; 光拓扑态 ; 零折射率
  • 英文关键词:photonic bandgap;;photonic crystal;;metamaterial;;optical topological state;;zero refractive index
  • 中文刊名:XJKB
  • 英文刊名:Materials China
  • 机构:中国科学院大学光电学院;
  • 出版日期:2019-01-28 10:30
  • 出版单位:中国材料进展
  • 年:2019
  • 期:v.38;No.445
  • 基金:国家自然科学基金资助项目(11574311)
  • 语种:中文;
  • 页:XJKB201901004
  • 页数:9
  • CN:01
  • ISSN:61-1473/TG
  • 分类号:28-35+47
摘要
光子带隙超材料是一种可用于控制和操纵光传导的极具吸引力的人造材料,通常是由周期性电介质、金属、超导体等组合而成的微结构或纳米结构。光子带隙可理解为在晶体中传播的光在高、低介电常数区域的界面处发生多次反射而干涉相消,类似于固体物理中的电子带隙。针对近年来光子带隙超材料研究领域的几个热门方向——光子晶体光纤、光学拓扑态、Dirac点零折射率和带隙调制发光,从凝聚态物理学理论出发,通过与电子带隙和Dirac方程理论的比较和拓展,详细介绍了介质基光子晶体、光拓扑绝缘体、Dirac点多重简并、金属和发光材料与光子晶体构成的复合光子带隙超材料的研究进展和应用现状。光子带隙超材料灵活可调控的光学特性不但可以用于设计更高品质的传统光学器件,还可以获得自然界中不存在的奇特属性。我们相信随着现代科技的发展进步,多学科和多方向的交叉融合能够进一步拓宽光子超材料的设计思路,推进理论向实用转化。
        Photonic-bandgap metamaterial is a kind of attractive man-made material used to manipulate light transmission,which commonly appears as microstructure or nanostructure composed of periodic dielectrics,metals,or even superconductors.The photonic bandgap can be regarded as the light propagating in the photonic crystal undergoes multiple reflections at the interfaces of high and low dielectric constant regions and destructive interference,similar to the electron bandgap of solidstate physics. This paper focuses on several popular fields of photonic bandgap metamaterial research in recent years:photonic crystal fiber,optical topological state,Dirac point zero refractive index and bandgap modulation luminescence,from the theory of condensed matter physics. Comparing with the electronic bandgap and Dirac equation theory,the development and application of dielectric photonic crystals,optical topological insulators,multiple degeneracy at Dirac point,composite photonic-bandgap materials composed of metal,luminescent materials and photonic crystals are demonstrated in detail. The flexible and tunable properties of photonic bandgap metamaterials can be used not only to design conventional optical device with higher quality,but also to obtain exotic properties that are not found in nature. We believe that,with the development and progress of modern science and technology,multi-disciplinary and multi-directional cross-fusion can further broaden the design ideas of photonic metamaterials and promote the theory results to transform to application.
引文
[1] Dong G Y,Yang X L,Cai L Z. Optics Express[J],2010,18(16):16302-16308.
    [2] Zhang C,Yang Y,Wang C,et al. Optics Express[J],2016,24(4):3981-3988.
    [3] Sengupta S,Ghorai S K. Optical&Quantum Electronics[J],2016,48(10):482.
    [4] Zhang Y,Guo Z,Qiao W,et al. Microwave&Optical Technology Letters[J],2016,58(12):2892-2894.
    [5] Prasad A S G,Asokan S. Experimental Techniques[J],2016,39(6):19-24.
    [6] Kassani S H,Khazaeinezhad R,Jung Y,et al. IEEE Photonics Journal[J],2015,7(1):1-9.
    [7] Li Xuejin(李学金),Yu Yongqin(于永芹),Hong Xueming(洪学明),et al. Chinese Journal of Lasers(中国激光)[J],2009,36(5):1140-1144.
    [8] Saghaei H. Radioengineering[J],2017,26(1):16-22.
    [9] Mansaray A,Rabah J,Duran M,et al. Journal of Lightwave Technology[J],2016,34(4):1398-1404.
    [10] Yu H,Ma J,Li X,et al. Numerical Analysis of A Novel Refractive Index and Temperature Sensor Based on A KagoméHollow-Core Photonic Crystal Fiber[C]//Proceedings of the 2016 IEEE SENSORS. 2016
    [11] Lu Y,Yang X,Wang M,et al. Electronics Letters[J],2015,51(21):1675-1677.
    [12] Cheng C,Zeng Y,Ou Y,et al. Optik-International Journal for Light and Electron Optics[J],2017,133:66-72.
    [13] Ménard J M,Kttig F,St J R P. Optics Letters[J],2016,41(16):3795-3798.
    [14] Farrell C,Serrels K A,Lundquist T R,et al. Optics Letters[J],2012,37(10):1778-1780.
    [15] Yu F,Wang J,Han L,et al. Chinese Optics Letters[J],2015,13(1):17-21.
    [16] Pollmann F,Berg E,Turner A M,et al. Physical Review B[J],2012,85(7):075125.
    [17] Haldane F D M,Raghu S. Physical Review Letters[J],2008,100(1):013904.
    [18] Tan Wei(谭为),Chen Hong(陈鸿).[J]. Physics(物理)[J],2017,46(1):29-37.
    [19] Hasan M Z,Kane C L. Physics[J],2010,39(10):843-846.
    [20] Wang Z,Chong Y D,Joannopoulos J D,et al. Physical Review Letters[J],2007,100(1):013905.
    [21] Wang Z,Chong Y,Joannopoulos J D,et al. Nature[J],2009,461(7265):772-775.
    [22] Lu L,Joannopoulos J D,Soljaˇci'c M. Nature Photonics[J],2014,8:821-829.
    [23] Fu J X,Liu R J,Li Z Y. Europhysics Letters[J],2010,89(6):64003.
    [24] Khanikaev A B,Hossein Mousavi S,Tse W K,et al. Nature Materials[J],2012,12:233-239.
    [25] Chen W J,Jiang S J,Chen X D,et al. Nature Communications[J],2014,5:5782-5785.
    [26] He C,Sun X C,Liu X P,et al. Proceedings of the National Academy of Sciences of the United States of America[J],2016,113(18):4924-4928.
    [27] Wu L H,Hu X. Physical Review Letters[J],2015,114(22):223901.
    [28] Xu L,Wang H X,Xu Y D,et al. Optics Express[J],2016,24(16):18059-18071.
    [29] Lindner N,Refael G,Galitski V. Nature Physics[J],2012,7(6):490-495.
    [30] Rechtsman M C,Zeuner J M,Plotnik Y,et al. Nature[J],2013,496:196-200.
    [31] Lu L,Fu L,Joannopoulos J D,et al. Nature Photonics[J],2013,7(4):294-299.
    [32] Lu L,Fang C,Fu L,et al. Nature Physics[J],2016,12:337-340.
    [33] Wang H,Xu L,Chen H,et al. Physical Review B[J],2016,93(23):235155.
    [34] Mei J,Wu Y,Chan C T,et al. Physical Review B[J],2012,86(3):035141.
    [35] Wang L G,Wang Z G,Zhang J X,et al. Optics Letters[J],2009,34(10):1510-1512.
    [36] Huang X,Lai Y,Hang Z H,et al. Nature Materials[J],2011,10(8):582-586.
    [37] Sakoda K. Optics Express[J],2012,20(9):9925-9939.
    [38] Li Y,Mei J. Optics Express[J],2015,23(9):12089-12099.
    [39] Dong J W,Chang M L,Huang X Q,et al. Physical Review Letters[J],2015,114(16):163901.
    [40] Wang J R,Chen X D,Zhao F L,et al. Scientific Reports[J],2016,6:22739.
    [41] Moitra P,Yang Y,Anderson Z,et al. Nature Photonics[J],2013,7(10):791-795.
    [42] Dong G,Zhou J,Qiao P,et al. Optics Express[J],2017,25(25):31509-31515.
    [43] Li Y,Kita S,Muoz P,et al. Nature Photonics[J],2015,9(11):738-742.
    [44] Wang H,Liao C. Proceedings of SPIE-The International Society for Optical Engineering[J],2016,5277:365-374.
    [45] Chai Z,Yang Z,Huang A,et al. Journal of Rare Earths[J],2017,35(12):1180-1185.
    [46] Rout D,Vijaya R. Plasmonics[J],2015,10(3):713-719.
    [47] Rout D,Vijaya R. Journal of Applied Physics[J],2016,119(2):023108.
    [48] Pelton M. Nature Photonics[J],2015,9(7):427-435.
    [49] Vasquez Y,Kolle M,Mishchenko L,et al. ACS Photonics[J],2016,1(1):53-60.
    [50] Ankudze B,Philip A,Pakkanen T T,et al. Applied Surface Science[J],2016,387:595-602.
    [51] Cai Z,Xiong Z,Lu X,et al. Journal of Materials Chemistry A[J],2013,2(2):545-553.
    [52] Collins G,Blmker M,Osiak M,et al. Chemistry of Materials[J],2013,25(21):4312-4320.
    [53] Choi G H,Rhee D K,Park A R,et al. ACS Applied Materials&Interfaces[J],2016,8(5):3250.
    [54] Xu S,Xu W,Wang Y,et al. Nanoscale[J],2014,6(11):5859-5870.
    [55] Cai Z,Liu Y J,Lu X,et al. Journal of Physical Chemistry C[J],2013,117(18):9440-9445.
    [56] Erola M O A,Philip A,Ahmed T,et al. Journal of Solid State Chemistry[J],2015,230:209-217.
    [57] Xu Q,Mahpeykar S M,Burgess I B,et al. ACS Applied Materials&Interfaces[J],2018,10(23):20120-20127
    [58] Yang J,Yang Z,Wang Y,et al. Optical Materials[J],2016,60:373-382.
    [59] Cai Z,Yan Y,Liu L,et al. RSC Advances[J],2017,7(88):55851-55858.
    [60] Kong X,Yu Q,Li E,et al. Materials[J],2018,11(4):539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700