Lewis酸碱对催化极性乙烯基单体聚合
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polymerization of Polar Vinyl Monomers Catalyzed by Lewis Pairs
  • 作者:白云 ; 张越涛
  • 英文作者:Yun Bai;Yue-tao Zhang;College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University;
  • 关键词:Lewis酸碱对聚合(LPP) ; 受阻Lewis酸碱对(FLP) ; 极性乙烯基单体 ; 活性可控聚合 ; 超高分子量 ; 催化
  • 英文关键词:Lewis pair polymerization (LPP);;Frustrated Lewis pair (FLP);;Polar vinyl monomer;;Living polymerization;;Ultrahigh molecular weight;;Catalysis
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:吉林大学化学学院超分子结构与材料国家重点实验室;
  • 出版日期:2019-02-28 18:05
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号21422401,21774042,21871107,21374040)资助项目
  • 语种:中文;
  • 页:GFXB201903005
  • 页数:14
  • CN:03
  • ISSN:11-1857/O6
  • 分类号:43-56
摘要
Lewis酸碱对聚合(Lewis pair polymerization, LPP)是目前化学研究的一个前沿和热点.自从受阻Lewis酸碱对(frustrated Lewis pair, FLP)概念被提出以来,FLP在有机小分子合成领域得到了快速发展并取得了令人瞩目的成就.然而FLP在高分子合成,尤其是在极性乙烯基单体聚合方面的应用则是方兴未艾.本专论总结了LP在高分子合成方面的最新研究进展,论述了LP在极性乙烯基单体聚合上的应用.从LP体系首次被应用于高分子合成领域到进一步研究聚合反应机制,通过对机理的理解来开发新的Lewis酸碱组合进行催化聚合,从Lewis酸碱加合物(CLA)到FLP,从非活性聚合到活性可控聚合再到利用活性聚合体系得到超高分子量的聚合物,按照体系的发展进程做了系统的介绍.最后还对LP在高分子研究领域的发展方向进行了展望.
        The field of the "frustrated Lewis pair"(FLP) chemistry has been receiving sustained intense interests ever since the seminal work reported by Stephan and Erker. On the one hand, the application of FLPs has now been well established in the small molecule chemistry, such as the activation of small molecules, catalytic hydrogenation reactions, and new reactivity/reaction developments. On the other hand, Lewis pair polymerization(LPP) has emerged as the hotspot and frontier of polymer synthesis and generated some exciting results in polymer synthesis, especially in the polymerization of various polar vinyl monomers. Although the polymerization promoted by LPs, either FLPs or classical Lewis adducts(CLAs), exhibited high activity for polymerization of polar vinyl monomers, the application of such polymerization is hampered by both the low initiation efficiencies and chain-termination side reactions, evidenced by the much higher obtained number-average molecular weight(Mn) than the calculated Mn and broader molecular weight distribution(MWD, or large ? values) of the resulting polymers, thus giving rise to low initiation efficiencies(I*) and rendering the inability to produce well-defined block copolymers. Therefore, it remains as a challenge to achieve the living polymerization of polar vinyl monomers by a non-interacting, true FLP, or LP-promoted living polymerization of less bulky methacrylates,particularly methyl methacrylate(MMA), a very important fundamental monomer in the polymer industry. Herein,we summarized the recent developments achieved in the polar vinyl monomer polymerization by LPP since the first successful polymerization catalyzed by LP in 2010, including the scopes of monomers, investigation of reaction mechanism, and different polymerization catalyst systems based on classic Lewis acid-base adduct(CLA)or FLP. These results indicated that the synergistic effects of the LA and LB sites of LPs were essential to achieve an effective and controllable polymerization system. By choosing appropriate combination of Lewis acid and Lewis base, not only the living polymerization of polar vinyl monomer could be achieved, but also the synthesis of ultrahigh molecular weight polymer with Mn > 106 g mol-1 and narrow MWD was obtained through this FLP polymerization strategy. Last but not least, with the aim to push forward the studies on LPP, more attention should be paid by chemists from but not limited to the field of frustrated Lewis pairs chemistry for the developing and enriching polymer synthesis by LPP.
引文
1 Lewis G N.Valence and the Structure of Atoms and Molecules.New York:Chemical Catalog Co.,1923.1-173
    2 Brown H C,Schlesinger H I,Cardon S Z.J Am Chem Soc,1942,64(2):325-329
    3 Wittig G,Benz E.Chem Ber,1959,92(9):1999-2013
    4 Tochtermann W.Angew Chem Int Ed,1966,5(4):351-371
    5 Welch G C,Juan R S,Masuda J D,Stephan D W.Science,2006,314(5802):1124-1126
    6 Welch G C,Stephan D W.J Am Chem Soc,2007,129(7):1880-1881
    7 Spies P,Erker G,Kehr G,Bergander K,Fr?hlich R,Grimme S,Stephan D W.Chem Commun,2007,(47):5072-5074
    8 Stephan D W.Science,2016,354(6317):aaf7229
    9 Stephan D W and Erker G.Angew Chem Int Ed,2015,54(22):6400-6441
    10 Stephan D W.Acc Chem Res,2015,48(2):306-316
    11 Simonneau A,Turrel R,Vendier L and Etienne M.Angew Chem Int Ed,2017,56(40):12268-12272
    12 Jian Z B,Kehr G,Daniliuc C G,Wibbeling B,Wiegand T,Siedow M,Eckert H,Bursch M,Grimme S,Erker G. J Am Chem Soc,2017,139(18):6474-6483
    13 Trunk M,Teichert J F and Thomas A.J Am Chem Soc,2017,139(10):3615-3618
    14 Fasano V,Curless L D,Radcliffe J E and Ingleson M J.Angew Chem Int Ed,2017,56(31):9202-9206
    15 Scott D J,Fuchter M J and Ashley A E.Chem Soc Rev,2017,46(19):5689-5700
    16 Li S L,Li G,Meng W and Du H F.J Am Chem Soc,2016,138(39):12956-12962
    17 Han Y X,Zhang S T,He J H,Zhang Y T.J Am Chem Soc,2017,139(21):7399-7407
    18 Han Y X,Zhang S T,He J H,Zhang Y T.ACS Catal,2018,8(9):8765-8773
    19 Zhang S T,Han Y X,He J H,Zhang Y T.J Org Chem,2018,83(3):1377-1386
    20 Zhang Y T,Miyake G M,Chen E Y X.Angew Chem Int Ed,2010,49(22):10158-10162
    21 Zhang Y T,Miyake G M,John M G,Falivene L,Caporaso L,Cavallo L,Chen E Y X.Dalton Trans,2012,41(30):9119-9134
    22 He J H,Zhang Y T,Chen E Y X.Synlett,2014,25(11):1534-1538
    23 Jia Y B,Wang Y B,Ren W M,Xu T Q,Wang J,Lu X B.Macromolecules,2014,47(6):1966-1972
    24 Jia Y B,Ren W M,Liu S J,Xu T Q,Wang Y B,Lu X B.ACS Macro Lett,2014,3(9):896-899
    25 Ma J,Cheng C,Sun G R,Wooley K L.Macromolecules,2008,41(23):9080-9089
    26 Sugiyama F,Satoh K,Kamigaito M.Macromolecules,2008,41(9):3042-3048
    27 Ishizone T,Uehara G,Hirao A,Nakahama S.Macromolecules,1998,31(12):3764-3774
    28 Mohan Y M,Raghunadh V,Sivaram S,Baskaran D.Macromolecules,2012,45(8):3387-3393
    29 He J H,Zhang Y T,Falivene L,Caporaso L,Cavallo L,Chen E Y X.Macromolecules,2014,47(22):7765-7774
    30 Xu T Q,Chen E Y X.J Am Chem Soc,2014,136(5):1774-1777
    31 Chen J W,Chen E Y X.Isr J Chem,2015,55(2):216-225
    32 Zhang Y T,Chen E Y X.Angew Chem Int Ed,2012,51(10):2465-2469
    33 Zhang Y T,Schmitt M,Falivene L,Caporaso L,Cavallo L,Chen E Y X.J Am Chem Soc,2013,135(47):17925-17942
    34 Chen J W,Chen E Y X.Molecules,2015,20(6):9575-9590
    35 Knaus M G M,Giuman M M,Pothig A,Rieger B.J Am Chem Soc,2016,138(24):7776-7781
    36 Ottou W N,Conde-Mendizabal E,Pascual A,Wirotius A L,Bourichon D,Vignolle J,Robert F,Landais Y,Sotiropoulos J M,Miqueu K and Taton D.Macromolecules,2017,50(3):762-774
    37 Zhang Y T,Chen E Y X.Macromolecules,2008,41(1):36-42
    38 Zhang Y T,Chen E Y X.Macromolecules,2008,41(17):6353-6360
    39 Miyake G M,Zhang Y T,Chen E Y X.Macromolecules,2010,43(11):4902-4908
    40 Zhang Y T,Gustafson L O,Chen E Y X.J.Am Chem Soc,2011,133(34):13674-13684
    41 Chen J W,Gowda R R,He J H,Zhang Y T,Chen E Y X.Macromolecules,2016,49(21):8075-8087
    42 Zhang Y T,Lay F,García-García P,List B,Chen E Y X.Chem Eur J,2010,16(34):10462-10473
    43 Fuchise K,Chen Y G,Satoh T and Kakuchi T.Polym Chem,2013,4(16):4278-4291
    44 Xu P F,Yao Y M,Xu X.Chem Eur J,2017,23(6):1263-1267
    45 Xu P F,Xu X.ACS Catal,2017,8(1):198-202
    46 Hosoi Y,Takasu A,Matsuoka S I,Hayashi M.J Am Chem Soc,2017,139(42):15005-15012
    47 Gowda,R R,Chen,E Y X.Philos Trans R Soc,A,2017,375:20170003
    48 Hu L,Zhao W C,He J H,Zhang Y T.Molecules,2018,23(3):665
    49 Hu L,He J H,Zhang Y T,Chen E Y X.Macromolecules,2018,51(4):1296-1307
    50 Wang Q Y,Zhao W C,Zhang S T,He J H,Zhang Y T,Chen E Y X.ACS Catal,2018,8(4):3571-3578
    51 Beckett M A,Brassington D S,Coles S J,Hursthouse M B.Inorg Chem Commun,2000,3(10):530-533
    52 Heiden Z M,Lathem A P.Organometallics,2015,34(10):1818-1827
    53 McGraw M,Chen E Y X.ACS Catal,2018,8(10):9877-9887
    54 Urbas A M,Maldovan M,DeRege P,Thomas E L.Adv Mater,2002,14(24):1850-1853
    55 Yoon J,Lee W,Thomas E L.Adv Mater,2006,18(20):2691-2694
    56 Rzayev J,Penelle J.Angew Chem Int Ed,2004,43(13):1691-1694
    57 Arita T,Kayama Y,Ohno K,Tsujii Y,Fukuda T.Polymer,2008,49(10):2426-2429
    58 Bai Y,He J H,Zhang Y T.Angew Chem Int Ed,2018,57(52):17230-17234
    59 Wu?nsche M A,Mehlmann P,Witteler T,Bu?F,Rathmann P,Dielmann F.Angew Chem Int Ed,2015,54(40):11857-11860
    60 Hong M,Chen J W,Chen E Y X.Chem Rev,2018,118(20):10551-10616
    61 Dove A,Sardon H,Naumann S.Organic Catalysis for Polymerisation.London:The Royal Society of Chemistry,2019.473-530
    62 Webster O W,Hertler W R,Sogah D Y,Farnham W B,Rajanbabu T V.J Am Chem Soc,1983,105(17):5706-5708
    63 Webster O W.J Polym Sci,Part A:Polym Chem,2000,38(16):2855-2860
    64 Chen E Y X.Chem Rev,2009,109(11):5157-5214
    65 Chen E Y X.Dalton Trans,2009,0(41):8784-8793
    66 Chen min(陈敏),Chen Changle(陈昶乐).Acta Polymerica Sinica(高分子学报),2018,(11):1372-1384
    67 Jian Zhongbao(简忠保).Acta Polymerica Sinica(高分子学报),2018,(11):1359-137
    68 Lu W,Wang Y Y,Wang W Y,Cheng S W,Zhu J H,Xu Y W,Hong K L,Kang N G,Mays J.Polym Chem,2017,8(37):5741-5748
    69 Lu W,Goodwin A,Wang Y Y,Yin P C,Wang W Y,Zhu J H,Wu T,Lu X Y,Hu B,Hong K L,Kang N G,Mays J.Polym Chem,2018,9(2):160-168
    70 Zou Yidong(邹义冬),Cheng Xiaowei(程晓维),Deng Yonghui(邓勇辉).Acta Polymerica Sinica(高分子学报),2018,(11):1400-1415
    71 Xu Jiangfei(徐江飞),Zhang Xi(张希).Acta Polymerica Sinica(高分子学报),2017,(1):3-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700