岩性对化学风化的影响:来自亚热带气候条件下花岗岩和安山岩的对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Lithology on Chemical Weathering:Comparison of Granite and Andesite in Subtropical Climate
  • 作者:孙明照 ; 瞿书逸 ; 李来峰 ; 李乐 ; 吴卫华
  • 英文作者:SUN Ming-zhao;QU Shu-yi;LI Lai-feng;LI Le;WU Wei-hua;School of Earth Sciences and Engineering,Nanjing University;Key Laboratory of Surficial Geochemistry of Ministry of Education,Nanjing University;
  • 关键词:化学风化 ; 岩性 ; 花岗岩 ; 安山岩 ; 硅酸盐 ; 碳酸盐 ; 亚热带 ; 云南
  • 英文关键词:chemical weathering;;lithology;;granite;;andesite;;silicate;;carbonate;;subtropical;;Yunnan
  • 中文刊名:XAGX
  • 英文刊名:Journal of Earth Sciences and Environment
  • 机构:南京大学地球科学与工程学院;南京大学表生地球化学教育部重点实验室;
  • 出版日期:2018-09-15
  • 出版单位:地球科学与环境学报
  • 年:2018
  • 期:v.40;No.162
  • 基金:国家自然科学基金项目(41373003,41773007)
  • 语种:中文;
  • 页:XAGX201805011
  • 页数:10
  • CN:05
  • ISSN:61-1423/P
  • 分类号:127-136
摘要
硅酸盐风化被称为"地质空调",影响着地球的长期气候变化。控制硅酸盐风化速率的影响因素有很多,包括岩性、植被、气候和构造等。为了探讨岩性单一变量对于硅酸盐风化速率的影响,选取云南省腾冲市北海湿地的数十平方千米区域作为研究对象。该区域仅有花岗岩和安山岩两种岩性出露,花岗岩流域和安山岩流域的构造活动一致,温度、降雨量、径流量等气候条件相同,植被的发育情况也完全相似。基于上述情况,对区域内采集的4个河水样品和1个雨水样品开展水化学质量平衡计算。结果表明:大气输入、硅酸盐风化和碳酸盐风化对于采样流域主量阳离子的贡献比例平均值分别为8.1%、76.5%、16.0%;采样区域内硅酸盐和碳酸盐风化速率平均值分别为5.68、9.96t·km~(-2)·年~(-1),大气CO_2消耗速率分别为2.68×10~5、0.29×10~5 mol·km~(-2)·年~(-1);花岗岩和安山岩的风化速率分别为3.22、8.14t·km~(-2)·年~(-1)。安山岩的风化速率是花岗岩的2.5倍,表明在植被、气候、构造等条件一致的情况下,岩性对化学风化的影响占主导地位。
        Silicate weathering,which is known as earth's thermostat,affects earth's long-term climate change.There are many factors to control the silicate weathering rate,including lithology,vegetation,climate and tectonics.A small area of tens of square kilometers near Beihai wetland of Tengchong city,Yunnan province,was selected to discuss the effects of lithology on the silicate weathering rate.The area develops two kinds of lithology,including granite and andesite;the granite and andesite watersheds have the same tectonics,climate and vegetationconditions.Based on the above situations,4 river water and 1 rain water samples in Beihai wetland were collected to carry out the calculation of water chemical mass balance.The results show that the average values of the contribution of atmospheric inputs,silicate weathering and carbonate weathering to major cations in sampling watershed are 8.1%,76.5% and 16.0%,respectively;the average values of silicate and carbonate weathering rates are 5.68,9.96 t·km-2·a-1,the atmospheric CO2 consuming rates are 2.68×105,0.29×105 mol·km-2·a-1;the weathering rates of granite and andesite are 3.22,8.14 t·km-2·a-1,respectively.The weathering rate of andesite is 2.5 times than that of granite,indicating that the effects of lithology on silicate weathering are dominant under the same conditions of vegetation,climate and tectonics.
引文
[1]LEDLEY T S,SUNDQUIST E T,SCHWARTZ S E,et al.Climate Change and Greenhouse Gases[J].Eos Transactions American Geophysical Union,2013,80(39):453-458.
    [2]WALKER J C G,HAYS P B,KASTING J F.A Negative Feedback Mechanism for the Long-term Stabilization of Earth's Surface Temperature[J].Journal of Geophysical Research:Oceans,1981,86(C10):9776-9782.
    [3]BERNER R A,LASAGA A C,GARRELS R M.The Carbonate-silicate Geochemical Cycle and Its Effects on Atmospheric Carbon Dioxide over the Past 100Million Years[J].American Journal of Science,1983,283:641-683.
    [4]RAYMO M E,RUDDIMAN W F.Tectonic Forcing of Late Cenozoic Climate[J].Nature,1992,359:117-122.
    [5]KUMP L R,BRANTLEY S L,ARTHUR M A.Chemical Weathering,Atmospheric CO2,and Climate[J].Annual Review of Earth and Planetary Sciences,2000,28:611-667.
    [6]金章东,李英,王苏民.不同构造带硅酸盐化学风化率的制约:气候还是构造?[J].地质论评,2005,51(6):672-680.JIN Zhang-dong,LI Ying,WANG Su-min.Constraints on Silicate Weathering Rates in Different Settings:Climatic or Tectonic?[J].Geological Review,2005,51(6):672-680.
    [7]吴卫华,郑洪波,杨杰东,等.硅酸盐风化与全球碳循环研究回顾及新进展[J].高校地质学报,2012,18(2):215-224.WU Wei-hua,ZHENG Hong-bo,YANG Jie-dong,et al.Review and Advancements of Studies on Silicate Weathering and the Global Carbon Cycle[J].Geological Journal of China Universities,2012,18(2):215-224.
    [8]BRADY P V,CARROLL S A.Direct Effects of CO2and Temperature on Silicate Weathering:Possible Implications for Climate Control[J].Geochimica et Cosmochimica Acta,1994,58(7):1853-1856.
    [9]CHAMBERLIN T C.An Attempt to Frame a Working Hypothesis of the Cause of Glacial Periods on an Atmospheric Basis(Continued)[J].The Journal of Geology,1899,7(7):667-685.
    [10]RAYMO M E,RUDDIMAN W F,FROELICH P N.Influence of Late Cenozoic Mountain Building on Ocean Geochemical Cycles[J].Geology,1988,16(7):649-653.
    [11]LI G J,ELDERFIELD H.Evolution of Carbon Cycle over the Past 100 Million Years[J].Geochimica et Cosmochimica Acta,2013,103:11-25.
    [12]WHITE A F,PETERSON M L,HOCHELLA JR M F H.Electrochemistry and Dissolution Kinetics of Magnetite and Ilmenite[J].Geochimica et Cosmochimica Acta,1994,58(8):1859-1875.
    [13]WHITE A F,BLUM A E.Effects of Climate on Chemical Weathering in Watersheds[J].Geochimica et Cosmochimica Acta,1995,59(9):1729-1747.
    [14]WHITE A F,BRANTLEY S L.The Effect of Time on the Weathering of Silicate Minerals:Why Do Weathering Rates Differ in the Laboratory and Field?[J].Chemical Geology,2003,202(3/4):479-506.
    [15]BLUM A E,STILLINGS L L.Feldspar Dissolution Kinetics[J].Reviews in Mineralogy and Geochemistry,1995,31(1):291-351.
    [16]BRANTLEY S L,CHEN Y.Chemical Weathering Rates of Pyroxenes and Amphiboles[J].Reviews in Mineralogy and Geochemistry,1995,31(1):119-172.
    [17]NAGY K L.Dissolution and Precipitation Kinetics of Sheet Silicates[J].Reviews in Mineralogy and Geochemistry,1995,31(1):173-233.
    [18]BLUTH G J S,KUMP L R.Lithologic and Climatologic Controls of River Chemistry[J].Geochimica et Cosmochimica Acta,1994,58(10):2341-2359.
    [19]DESSERT C,DUPRE B,GAILLARDET J,et al.Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle[J].Chemical Geology,2003,202(3/4):257-273.
    [20]OLIVA P,VIERS J,DUPRE B.Chemical Weathering in Granitic Environments[J].Chemical Geology,2003,202(3/4):225-256.
    [21]WEST A J,GALY A,BICKLE M.Tectonic and Climatic Controls on Silicate Weathering[J].Earth and Planetary Science Letters,2005,235(1/2):211-228.
    [22]WEST A J.Thickness of the Chemical Weathering Zone and Implications for Erosional and Climatic Drivers of Weathering and for Carbon-cycle Feedbacks[J].Geology,2012,40(9):811-814.
    [23]LARSEN I J,ALMOND P C,EGER A,et al.Rapid Soil Production and Weathering in the Southern Alps,New Zealand[J].Science,2014,343:637-640.
    [24]DESSERT C,DUPRE B,FRANCOIS L M,et al.Erosion of Deccan Traps Determined By River Geochemistry:Impact on the Global Climate and the 87 Sr/86 Sr Ratio of Seawater[J].Earth and Planetary Science Letters,2001,188(3/4):459-474.
    [25]LI D D,JACOBSON A D,MCINERNEY D J.A Reactive-transport Model for Examining Tectonic and Climatic Controls on Chemical Weathering and Atmospheric CO2 Consumption in Granitic Regolith[J].Chemical Geology,2014,365:30-42.
    [26]LI G J,HARTMANN J,DERRY L A,et al.Temperature Dependence of Basalt Weathering[J].Earth and Planetary Science Letters,2016,443:59-69.
    [27]王雨山,韩双宝,邓启军,等.马莲河流域化学风化的季节变化和影响因素[J].环境科学,2018,39(9):4132-4141.WANG Yu-shan,HAN Shuang-bao,DENG Qi-jun,et al.Seasonal Variations in River Water Chemical Weathering and Its Influence Factors in the Malian River Basin[J].Environmental Science,2018,39(9):4132-4141.
    [28]SCHWARTZMAN D W,VOLK T.Biotic Enhancement of Weathering and the Habitability of Earth[J].Nature,1989,340:457-460.
    [29]STREET-PERROTT F A,BARKER P A.Biogenic Silica:A Neglected Component of the Coupled Global Continental Biogeochemical Cycles of Carbon and Silicon[J].Earth Surface Processes and Landforms,2008,33(9):1436-1457.
    [30]杨瑞钰,李高军,陈骏.大陆地壳风化亏损的碳循环限定[J].地球科学与环境学报,2018,40(2):155-161.YANG Rui-yu,LI Gao-jun,CHEN Jun.Carbon Cycle Restrained Quantification of Weathering Depletion in Making Continental Crust[J].Journal of Earth Sciences and Environment,2018,40(2):155-161.
    [31]吕婕梅,安艳玲,吴起鑫,等.清水江流域岩石风化特征及其碳汇效应[J].环境科学,2016,37(12):4671-4679.LU Jie-mei,AN Yan-ling,WU Qi-xin,et al.Rock Weathering Characteristics and the Atmospheric Carbon Sink in the Chemical Weathering Processes of Qingshuijiang River Basin[J].Environmental Science,2016,37(12):4671-4679.
    [32]MEYBECK M.Global Chemical Weathering of Surficial Rocks Estimated From River Dissolved Loads[J].American Journal of Science,1987,287(5):401-428.
    [33]SUCHET P A,PROBST J L,LUDWIG W.Worldwide Distribution of Continental Rock Lithology:Implications for the Atmospheric/Soil CO2 Uptake by Continental Weathering and Alkalinity River Transport to the Oceans[J].Global Biogeochemical Cycles,2003,17(2):1038-1051.
    [34]何进花,丁文荣.基于Morlet小波的龙川江流域年径流变化的周期性分析及趋势预测[J].思茅师范高等专科学校学报,2011,27(6):36-41.HE Jin-hua,DING Wen-rong.Period Analysis and Trend Forecasting Annual Runoff in Longchuan River Basin Based on Morlet Wavelet Function[J].Journal of Simao Teachers'College,2011,27(6):36-41.
    [35]丁文荣.龙川江流域上游地区河流泥沙输移变化及影响因素[J].水电能源科学,2017,35(4):115-119.DING Wen-rong.Sediment Transportation Features and Influencing Factors in Upper Reaches of Longchuanjiang Basin[J].Water Resources and Power,2017,35(4):115-119.
    [36]杨启军,徐义刚,黄小龙,等.滇西腾冲—梁河地区花岗岩的年代学、地球化学及其构造意义[J].岩石学报,2009,25(5):1092-1104.YANG Qi-jun,XU Yi-gang,HUANG Xiao-long,et al.Geochronology and Geochemistry of Granites in the Tengliang Area,Western Yunnan:Tectonic Implication[J].Acta Petrologica Sinica,2009,25(5):1092-1104.
    [37]孙明照.硅酸盐风化速率及其控制因素:来自不同“小流域系统”的研究[D].南京:南京大学,2018.SUN Ming-zhao.Silicate Weathering Rate and Controlling Factors:The Study from the Different“Small Watershed Systems”[D].Nanjing:Nanjing University,2018.
    [38]ZHANG W F,CHEN J,JI J F,et al.Evolving Flux of Asian Dust in the North Pacific Ocean Since the Late Oligocene[J].Aeolian Research,2016,23:11-20.
    [39]GAILLARDET J,DUPRE B,LOUVAT P,et al.Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers[J].Chemical Geology,1999,159(1/2/3/4):3-30.
    [40]HODELL D A,MEAD G A,MUELLER P A.Variation in the Strontium Isotopic Composition of Seawater(8 Ma to Present):Implications for Chemical Weathering Rates and Dissolved Fluxes to the Oceans[J].Chemical Geology:Isotope Geoscience Section,1990,80(4):291-307.
    [41]王云飞,朱育新,潘红玺,等.云南腾冲青海:酸性湖泊的环境特征[J].湖泊科学,2002,14(2):117-124.WANG Yun-fei,ZHU Yu-xin,PAN Hong-xi,et al.Environmental Characteristics of an Acid Qinghai Lake in Tengchong,Yunnan Province[J].Journal of Lake Sciences,2002,14(2):117-124.
    [42]GALY A,FRANCE-LANORD C.Weathering Processes in the Ganges-Brahmaputra Basin and the Riverine Alkalinity Budget[J].Chemical Geology,1999,159(1/2/3/4):31-60.
    [43]WU W H,XU S T,YANG J D,et al.Silicate Weathering and CO2 Consumption Deduced from the Seven Chinese Rivers Originating in the Qinghai-Tibet Plateau[J].Chemical Geology,2008,249(3/4):307-320.
    [44]DALAI T K,KRISHNASWAMI S,SARIN M M.Major Ion Chemistry in the Headwaters of the Yamuna River System:Chemical Weathering,Its Temperature Dependence and CO2 Consumption in the Himalaya[J].Geochimica et Cosmochimica Acta,2002,66(19):3397-3416.
    [45]林木森,彭松柏,乔卫涛.滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义[J].岩石学报,2017,33(10):3137-3146.LIN Mu-sen,PENG Song-bai,QIAO Wei-tao.40 Ar/39 Ar Geochronology and Geochemistry of Pleistocene Trachyandesite in Tengchong,Western Yunnan,China,and Its Tectonic Implication[J].Acta Petrologica Sinica,2017,33(10):3137-3146.
    [46]陶正华,赵志琦,张东,等.西南三江(金沙江、澜沧江和怒江)流域化学风化过程[J].生态学杂志,2015,34(8):2297-2308.TAO Zheng-hua,ZHAO Zhi-qi,ZHANG Dong,et al.Chemical Weathering in the Three Rivers(Jingshajiang,Lancangjiang and Nujiang)Watershed,Southwest China[J].Chinese Journal of Ecology,2015,34(8):2297-2308.
    [47]WU W H,ZHENG H B,YANG J D,et al.Chemical Weathering,Atmospheric CO2 Consumption,and the Controlling Factors in a Subtropical Metamorphichosted Watershed[J].Chemical Geology,2013,356:141-150.
    [48]GOLDSMITH S T,CAREY A E,JOHNSON B M,et al.Stream Geochemistry,Chemical Weathering and CO2 Consumption Potential of Andesitic Terrains,Dominica,Lesser Antilles[J].Geochimica et Cosmochimica Acta,2010,74(1):85-103.
    [49]DREVER J I.Chemical Weathering in a Subtropical Igneous Terrain,Rio Ameca,Mexico[J].Journal of Sedimentary Research,1971,41(4):951-961.
    [50]李甜甜,季宏兵,江用彬,等.赣江上游河流水化学的影响因素及DIC来源[J].地理学报,2007,62(7):764-775.LI Tian-tian,JI Hong-bing,JIANG Yong-bin,et al.Hydro-geochemistry and the Sources of DIC in the Upriver Tributaries of the Ganjiang River[J].Acta Geographica Sinica,2007,62(7):764-775.
    [51]解晨骥,高全洲,陶贞,等.东江流域化学风化对大气CO2的吸收[J].环境科学学报,2013,33(8):2123-2133.XIE Chen-ji,GAO Quan-zhou,TAO Zhen,et al.Chemical Weathering and CO2 Consumption in the Dongjiang River Basin[J].Acta Scientiae Circumstantiae,2013,33(8):2123-2133.
    [52]丁健,周永章,高全洲,等.广东韩江流域化学风化作用及大气CO2消耗的分析[J].中山大学学报:自然科学版,2013,52(3):117-127.DING Jian,ZHOU Yong-zhang,GAO Quan-zhou,et al.Chemical Weathering Processes and Atmospheric CO2Consumption in the Hanjiang River Basin,Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2013,52(3):117-127.
    [53]高全洲,陶贞.华南滨海花岗岩丘陵的化学风化与化学径流[J].中国科学:地球科学,2010,40(6):758-767.GAO Quan-zhou,TAO Zhen.Chemical Weathering and Chemical Runoffs in the Seashore Granite Hills in South China[J].Science China:Earth Sciences,2010,40(6):758-767.
    [54]刘宝剑,赵志琦,李思亮,等.寒温带流域硅酸盐岩的风化特征:以嫩江为例[J].生态学杂志,2013,32(4):1006-1016.LIU Bao-jian,ZHAO Zhi-qi,LI Si-liang,et al.Characteristics of Silicate Rock Weathering in Cold Temperate Zone:A Case Study of Nenjiang River,China[J].Chinese Journal of Ecology,2013,32(4):1006-1016.
    [55]刘宝剑.温带流域侵蚀与碳循环:中国东北河流地球化学研究[D].北京:中国科学院大学,2013.LIU Bao-jian.Erosion and Carbon Cycle in the Temperate Zone:Geochemical Studies on the Rivers of Northeast China[D].Beijing:University of Chinese Academy of Sciences,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700