粉末冶金Ti-Fe合金的显微组织及力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and mechanical properties of powder metallurgy Ti-Fe alloys
  • 作者:孟庆宇 ; 路新 ; 徐伟 ; 支玲玲 ; 陈骏 ; 曲选辉
  • 英文作者:MENG Qing-yu;LU Xin;XU Wei;ZHI Ling-ling;CHEN Jun;QU Xuan-hui;School of Metallurgical and Ecological Engineering;Institute for Advanced Materials and Technology,University of Science and Technology Beijing;
  • 关键词:Ti-Fe二元合金 ; 粉末冶金 ; 弹性模量 ; 显微组织
  • 英文关键词:Ti-Fe alloy;;powder metallurgy;;elastic modulus;;microstructure
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:北京科技大学冶金与生态工程学院;北京科技大学新材料技术研究院;
  • 出版日期:2016-08-25
  • 出版单位:材料热处理学报
  • 年:2016
  • 期:v.37;No.194
  • 基金:国家自然科学基金(51204015);; 高等学校博士学科点专项科研基金(20110006120023)
  • 语种:中文;
  • 页:JSCL201608007
  • 页数:5
  • CN:08
  • ISSN:11-4545/TG
  • 分类号:39-43
摘要
以元素粉末为原料,采用模压烧结技术制备了Ti-(2-20)Fe合金(Fe分别为2%、5%、10%、15%和20%),探讨了烧结工艺及Fe含量对合金组织和力学性能的影响规律。结果表明,在1100~1300℃烧结温度内可制备出组织成分均匀、高致密度(约为98%)的Ti-Fe合金材料。随Fe元素含量的提高,合金的烧结致密化温度明显降低,制备合金的晶粒尺寸减小,α层片体积含量降低并逐渐细化。当Fe含量为20%时,合金由单一β相晶粒构成。在1150℃烧结制备的Ti-15Fe合金相对具有最优的综合性能,其硬度为43.9 HRC,弹性模量为64.6 GPa,抗压强度为2702 MPa,压缩率为32.7%。
        Ti-(2-20) Fe alloys(with 2% 、5% 、10% 、15% or 20% Fe) were fabricated by powder metallurgy technique using elemental powders as raw materials.The effects of sintering temperature and Fe content on microstructure and mechanical properties of the alloys were studied.The results show that the Ti-x Fe alloys with high-density(about 98%) and uniform microstructure can be produced at the sintering temperature range of 1100-1300 ℃.With the increasing of Fe content,the sintering temperature for densification significantly decreases,while the grain size of β phase decreases and the α lamellars become less and thinner.As Fe content is up to 20%,the alloy samples consist of single β grains.In comparison,the Ti-15 Fe alloy sintered at 1150 ℃ exhibits the superior mechanical properties with hardness of 43.9 HRC,elastic modulus of 64.6 GPa,compressive strength of 2702 MPa,and compression rate of 32.7%.
引文
[1]Wen C E,Yamada Y,Shimojima K.Processing and mechanical properties of autogenous titanium implant materials[J].Journal of Materials Science:Materials in Medicine,2002,13(4):397-401.
    [2]Hutmacher D W.Polymeric scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(24):2529-2543.
    [3]Niinomi M,Kuroda D,Fukunaga K,et al.Corrosion wear fracture of newβtype biomedical titanium alloys[J].Materials Science and Engineering A,1999,263(2):193-199.
    [4]Mohammadi S,Wictorin L,Ericsonetal L E.Cast titanium as important material[J].Journal of Materials Science,1995(6):435-444.
    [5]Kathy Wang.The use of titanium for medical applications in the USA[J].Material Science and Engineering A,1996,213:134-137.
    [6]Niinomi M.Mechanical properties of biomedical titanium alloys[J].Materials Science and Engineering,1998,243:231-236.
    [7]Donachie M.Biomedical alloys[J].Advanced Materials&Processes,1998(7):63-65.
    [8]Tang H P,Wang J Z,Ao Q B,et al.Effect of pore structure on performance of porous metal fiber materials[J].Rare Metal Materials and Engineering,2015,44(8):1821-1826.
    [9]Bai X F,Zhao Y Q,Zeng W D,et al.Deformation mechanism and microstructure evolution of TLM titanium alloy during cold and hot compression[J].Rare Metal Materials and Engineering,2015,44(8):1827-1831.
    [10]Wang Y H,Han F B,Kou H C,et al.Internal-atate-variable based constitutive modeling for nearβTi-7Mo-3Al-3Nb-3Cr alloy during hot deformation process[J].Rare Metal Materials and Engineering,2015,44(8):1883-1887.
    [11]Majumdar P,Singh S B,Chakraborty M.The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2011,4(7):1132-1144.
    [12]周宇,杨贤金,崔振铎.新型医用β钛合金的研究现状及发展趋势[J].金属热处理,2005,30(1):47-50.ZHOU Yu,YANG Xian-jin,CUI Zhen-duo.Present status and developmental trend of novelβtitaanium alloys for biomedical applications[J].Heat Treatment of Metals,2005,30(1):47-50.
    [13]Haghighi S E,Lu H B,Jian G Y,et al.Effect ofα″martensite on the microstructure and mechanical properties of beta-type Ti-Fe-Ta alloys[J].Materials&Design,2015,76:47-54.
    [14]Yang Y F,Luo S D,Schaffer G B,et al.The sintering,sintered microstructure and mechanical properties of Ti-Fe-Si alloys[J].Metallurgical and Materials Transactions A,2012,43(12):4896-4906.
    [15]Chen B Y,Hwang K S,Ng K L.Effect of cooling process on theαphase formation and mechanical properties of sintered Ti-Fe alloys[J].Materials Science and Engineering A,2011,528(13/14):4556-4563.
    [16]金秋,李强,王新宇.粉末冶金法制备Ti-Fe系合金的研究[J].辽宁工业大学学报(自然科学版),2015,35(2):120-123.JIN Qiu,LI Qiang,WANG Xin-yu.Study of Ti-Fe alloy preparation with powder metallurgy method[J].Journal of Liaoning University of Technology(Natural Science Edition),2015,35(2):120-123.
    [17]Simka W,Krzakala A,Korotin D M,et al.Modification of a Ti-Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus[J].Electrochimica Acta,2013,96:180-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700