金属有机框架材料在光催化中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metal-organic frameworks for photocatalysis
  • 作者:肖娟定 ; 李丹丹 ; 江海龙
  • 英文作者:Juan-Ding Xiao;DANDan Li;Hai-Long Jiang;Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China;Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences;
  • 关键词:金属-有机框架材料 ; 光催化 ; 水裂解 ; 二氧化碳还原 ; 有机物转化
  • 英文关键词:metal-organic frameworks;;photocatalysis;;water splitting;;carbon dioxide reduction;;organic transformations
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:中国科学技术大学化学系中科院软物质化学重点实验室苏州纳米科技协同创新中心合肥微尺度物质科学国家研究中心;中国科学院核能安全技术研究所中子输运理论与辐射安全重点实验室;
  • 出版日期:2018-09-11
  • 出版单位:中国科学:化学
  • 年:2018
  • 期:v.48
  • 基金:国家重点基础研究发展规划(编号:2014CB931803);; 国家自然科学基金(编号:21725101,21673213,21701160,21521001);; 中国博士后科学基金(编号:2016M602018)资助项目
  • 语种:中文;
  • 页:JBXK201809007
  • 页数:18
  • CN:09
  • ISSN:11-5838/O6
  • 分类号:84-101
摘要
金属-有机框架材料(metal-organic frameworks,MOFs)是一类基于金属离子与有机配体组装而成的配位多孔材料,具有高比表面积、多活性位点、结构可剪裁、易功能化等特征.相当一部分MOFs能够表现出类半导体的行为,其有序结构不利于光生电子-空穴复合中心的产生,同时其多孔特性更是便于光生载流子的快速/高效利用.因此,近年来MOFs材料在光催化领域受到越来越广泛的关注与研究.本文从光催化反应类型出发,包括光催化染料降解、光催化有机物转化、光催化裂解水产氢、光催化水氧化、光催化二氧化碳还原反应等,总结了近年来MOFs及其复合催化剂设计合成及在光催化领域的应用研究进展,同时简要介绍了部分MOF衍生材料在光催化领域的应用,并对MOFs材料在光催化领域的应用前景进行了展望.
        As a relatively new class of crystalline porous materials, metal-organic frameworks(MOFs) possess high porosity, large BET surface area, and structural diversity and tailorability. Many MOFs feature semiconductor-like behavior, and their crystalline/perfect structures inhibit the recombination of photogenerated electron-hole pairs.Moreover, the porous structure of MOFs greatly facilitates the rapid utilization of charge carriers. Therefore, MOFs have earned more and more interest toward photocatalysis in recent years. In this review, we summarize recent progress of MOF-based catalysts for diverse photocatalytic reactions, including dye degradation, organic transformation, hydrogen production by water splitting, water oxidation, as well as carbon dioxide reduction, etc. In addition, the photocatalysis over MOF-pyrolyzed derivatives have been briefly introduced as well. Finally, the further development and challenge in MOF photocatalysis are discussed.
引文
1 Wu Y,Chen Z,Hu L,Jin M,Li Y,Jiang J,Yu J,Alejaldre C,Stevens E,Kim K,Maisonnier D,Kalashnikov A,Tobita K,Jackson D,Perrault D.Nat Energy,2016,1:16154
    2 Huang Q.Nucl Fusion,2017,57:086042
    3 Tong H,Ouyang S,Bi Y,Umezawa N,Oshikiri M,Ye J.Adv Mater,2012,24:229–251
    4 Ran J,Zhang J,Yu J,Jaroniec M,Qiao SZ.Chem Soc Rev,2014,43:7787–7812
    5 Wang H,Zhang L,Chen Z,Hu J,Li S,Wang Z,Liu J,Wang X.Chem Soc Rev,2014,43:5234–5244
    6 Kudo A,Miseki Y.Chem Soc Rev,2009,38:253–278
    7 Bai S,Ge J,Wang L,Gong M,Deng M,Kong Q,Song L,Jiang J,Zhang Q,Luo Y,Xie Y,Xiong Y.Adv Mater,2014,26:5689–5695
    8 Zhou W,Li W,Wang JQ,Qu Y,Yang Y,Xie Y,Zhang K,Wang L,Fu H,Zhao D.J Am Chem Soc,2014,136:9280–9283
    9 Xie YP,Yu ZB,Liu G,Ma XL,Cheng HM.Energy Environ Sci,2014,7:1895–1901
    10 Lin Q,Bu X,Mao C,Zhao X,Sasan K,Feng P.J Am Chem Soc,2015,137:6184–6187
    11 He Z,Kim C,Lin L,Jeon TH,Lin S,Wang X,Choi W.Nano Energy,2017,42:58–68
    12 Wen J,Xie J,Chen X,Li X.Appl Surf Sci,2017,391:72–123
    13 Long JR,Yaghi OM.Chem Soc Rev,2009,38:1213–1214
    14 Zhou HC,Long JR,Yaghi OM.Chem Rev,2012,112:673–674
    15 Cook TR,Zheng YR,Stang PJ.Chem Rev,2013,113:734–777
    16 Zhou HC,Kitagawa S.Chem Soc Rev,2014,43:5415–5418
    17 Devic T,Serre C.Chem Soc Rev,2014,43:6097–6115
    18 Zeng L,Guo X,He C,Duan C.ACS Catal,2016,6:7935–7947
    19 Li B,Wen HM,Cui Y,Zhou W,Qian G,Chen B.Adv Mater,2016,28:8819–8860
    20 Alvaro M,Carbonell E,Ferrer B,Llabrés i Xamena FX,Garcia H.Chem Eur J,2007,13:5106–5112
    21 Wen LL,Wang F,Feng J,Lv KL,Wang CG,Li DF.Cryst Growth Des,2009,9:3581–3589
    22 Das MC,Xu H,Wang Z,Srinivas G,Zhou W,Yue YF,Nesterov VN,Qian G,Chen B.Chem Commun,2011,47:11715–11717
    23 Li X,Pi Y,Wu L,Xia Q,Wu J,Li Z,Xiao J.Appl Catal B-Environ,2017,202:653–663
    24 Zeng X,Huang L,Wang C,Wang J,Li J,Luo X.ACS Appl Mater Interfaces,2016,8:20274–20282
    25 Li M,Zheng Z,Zheng Y,Cui C,Li C,Li Z.ACS Appl Mater Interfaces,2017,9:2899–2905
    26 Deng X,Li Z,García H.Chem Eur J,2017,23:11189–11209
    27 Wu P,He C,Wang J,Peng X,Li X,An Y,Duan C.J Am Chem Soc,2012,134:14991–14999
    28 Zhang Y,Guo J,Shi L,Zhu Y,Hou K,Zheng Y,Tang Z.Sci Adv,2017,3:e1701162
    29 Nasalevich MA,Goesten MG,Savenije TJ,Kapteijn F,Gascon J.Chem Commun,2013,49:10575–10577
    30 Chambers MB,Wang X,Ellezam L,Ersen O,Fontecave M,Sanchez C,Rozes L,Mellot-Draznieks C.J Am Chem Soc,2017,139:8222–8228
    31 Chen YZ,Wang ZU,Wang H,Lu J,Yu SH,Jiang HL.J Am Chem Soc,2017,139:2035–2044
    32 Dan-Hardi M,Serre C,Frot T,Rozes L,Maurin G,Sanchez C,Ferey G.J Am Chem Soc,2009,131:10857–10859
    33 Ke F,Wang L,Zhu J.Nano Res,2015,8:1834–1846
    34 Goh TW,Xiao C,Maligal-Ganesh RV,Li X,Huang W.Chem Eng Sci,2015,124:45–51
    35 Fu Y,Sun L,Yang H,Xu L,Zhang F,Zhu W.Appl Catal B-Environ,2016,187:212–217
    36 Yang Z,Xu X,Liang X,Lei C,Wei Y,He P,Lv B,Ma H,Lei Z.Appl Catal B-Environ,2016,198:112–123
    37 Xu X,Liu R,Cui Y,Liang X,Lei C,Meng S,Ma Y,Lei Z,Yang Z.Appl Catal B-Environ,2017,210:484–494
    38 Sun D,Ye L,Li Z.Appl Catal B-Environ,2015,164:428–432
    39 Li QY,Ma Z,Zhang WQ,Xu JL,Wei W,Lu H,Zhao X,Wang XJ.Chem Commun,2016,52:11284–11287
    40 Shi D,He C,Qi B,Chen C,Niu J,Duan C.Chem Sci,2015,6:1035–1042
    41 Nguyen HL,Vu TT,Le D,Doan TLH,Nguyen VQ,Phan NTS.ACS Catal,2017,7:338–342
    42 Long J,Wang S,Ding Z,Wang S,Zhou Y,Huang L,Wang X.Chem Commun,2012,48:11656–11658
    43 Johnson JA,Zhang X,Reeson TC,Chen YS,Zhang J.J Am Chem Soc,2014,136:15881–15884
    44 Johnson JA,Luo J,Zhang X,Chen YS,Morton MD,Echeverría E,Torres FE,Zhang J.ACS Catal,2015,5:5283–5291
    45 Wang D,Wang M,Li Z.ACS Catal,2015,5:6852–6857
    46 Zeng L,Liu T,He C,Shi D,Zhang F,Duan C.J Am Chem Soc,2016,138:3958–3961
    47 Wang D,Li Z.J Catal,2016,342:151–157
    48 Sun D,Li Z.J Phys Chem C,2016,120:19744–19750
    49 Logan MW,Lau YA,Zheng Y,Hall EA,Hettinger MA,Marks RP,Hosler ML,Rossi FM,Yuan Y,Uribe-Romo FJ.Catal Sci Technol,2016,6:5647–5655
    50 Yang C,You X,Cheng J,Zheng H,Chen Y.Appl Catal B-Environ,2017,200:673–680
    51 Yu X,Cohen SM.Chem Commun,2015,51:9880–9883
    52 Llabrés i Xamena FX,Corma A,Garcia H.J Phys Chem C,2007,111:80–85
    53 Assi H,Pardo Pérez LC,Mouchaham G,Ragon F,Nasalevich M,Guillou N,Martineau C,Chevreau H,Kapteijn F,Gascon J,Fertey P,Elkaim E,Serre C,Devic T.Inorg Chem,2016,55:7192–7199
    54 Shi D,Zheng R,Sun MJ,Cao X,Sun CX,Cui CJ,Liu CS,Zhao J,Du M.Angew Chem Int Ed,2017,56:14637–14641
    55 Song T,Zhang P,Zeng J,Wang T,Ali A,Zeng H.Int J Hydrogen Energy,2017,42:26605–26616
    56 Song T,Zhang L,Zhang P,Zeng J,Wang T,Ali A,Zeng H.J Mater Chem A,2017,5:6013–6018
    57 Gomes SC,Luz I,Llabrés i Xamena FX,Corma A,García H.Chem Eur J,2010,16:11133–11138
    58 Toyao T,Saito M,Horiuchi Y,Mochizuki K,Iwata M,Higashimura H,Matsuoka M.Catal Sci Technol,2013,3:2092–2097
    59 Hou C,Xu Q,Wang Y,Hu X.RSC Adv,2013,3:19820–19823
    60 Sun D,Liu W,Fu Y,Fang Z,Sun F,Fu X,Zhang Y,Li Z.Chem Eur J,2014,20:4780–4788
    61 Wen M,Mori K,Kamegawa T,Yamashita H.Chem Commun,2014,50:11645–11648
    62 Shen L,Luo M,Huang L,Feng P,Wu L.Inorg Chem,2015,54:1191–1193
    63 Wu ZL,Wang CH,Zhao B,Dong J,Lu F,Wang WH,Wang WC,Wu GJ,Cui JZ,Cheng P.Angew Chem Int Ed,2016,55:4938–4942
    64 Horiuchi Y,Toyao T,Saito M,Mochizuki K,Iwata M,Higashimura H,Anpo M,Matsuoka M.J Phys Chem C,2012,116:20848–20853
    65 Fateeva A,Chater PA,Ireland CP,Tahir AA,Khimyak YZ,Wiper PV,Darwent JR,Rosseinsky MJ.Angew Chem Int Ed,2012,51:7440–7444
    66 Xiao JD,Shang Q,Xiong Y,Zhang Q,Luo Y,Yu SH,Jiang HL.Angew Chem Int Ed,2016,55:9389–9393
    67 Tilgner D,Kempe R.Chem Eur J,2017,23:3184–3190
    68 Xiao JD,Han L,Luo J,Yu SH,Jiang HL.Angew Chem Int Ed,2018,57:1103–1107
    69 Sun X,Yu Q,Zhang F,Wei J,Yang P.Catal Sci Technol,2016,6:3840–3844
    70 Zhen W,Ma J,Lu G.Appl Catal B-Environ,2016,190:12–25
    71 Zhen W,Gao H,Tian B,Ma J,Lu G.ACS Appl Mater Interfaces,2016,8:10808–10819
    72 He J,Yan Z,Wang J,Xie J,Jiang L,Shi Y,Yuan F,Yu F,Sun Y.Chem Commun,2013,49:6761
    73 Saha S,Das G,Thote J,Banerjee R.J Am Chem Soc,2014,136:14845–14851
    74 Wang Y,Zhang Y,Jiang Z,Jiang G,Zhao Z,Wu Q,Liu Y,Xu Q,Duan A,Xu C.Appl Catal B-Environ,2016,185:307–314
    75 Zhou JJ,Wang R,Liu XL,Peng FM,Li CH,Teng F,Yuan YP.Appl Surf Sci,2015,346:278–283
    76 Peters AW,Li Z,Farha OK,Hupp JT.ACS Appl Mater Interfaces,2016,8:20675–20681
    77 Su Y,Zhang Z,Liu H,Wang Y.Appl Catal B-Environ,2017,200:448–457
    78 Liu H,Zhang J,Ao D.Appl Catal B-Environ,2018,221:433–442
    79 Lin R,Shen L,Ren Z,Wu W,Tan Y,Fu H,Zhang J,Wu L.Chem Commun,2014,50:8533
    80 Shen L,Luo M,Liu Y,Liang R,Jing F,Wu L.Appl Catal B-Environ,2015,166-167:445–453
    81 Bu Y,Li F,Zhang Y,Liu R,Luo X,Xu L.RSC Adv,2016,6:40560–40566
    82 Bag PP,Wang XS,Sahoo P,Xiong J,Cao R.Catal Sci Technol,2017,7:5113–5119
    83 Zhao CW,Li YA,Wang XR,Chen GJ,Liu QK,Ma JP,Dong YB.Chem Commun,2015,51:15906–15909
    84 Wang R,Gu L,Zhou J,Liu X,Teng F,Li C,Shen Y,Yuan Y.Adv Mater Interfaces,2015,2:1500037
    85 Hong J,Chen C,Bedoya FE,Kelsall GH,O’Hare D,Petit C.Catal Sci Technol,2016,6:5042–5051
    86 Xu J,Gao J,Wang C,Yang Y,Wang L.Appl Catal B-Environ,2017,219:101–108
    87 Kataoka Y,Sato K,Miyazaki Y,Masuda K,Tanaka H,Naito S,Mori W.Energy Environ Sci,2009,2:397–400
    88 Kataoka Y,Miyazaki Y,Sato K,Saito T,Nakanishi Y,Kiatagwa Y,Kawakami T,Okumura M,Yamaguchi K,Mori W.Supramol Chem,2011,
    23 :287–296
    89 Miyazaki Y,Kataoka Y,Mori W.J Nanosci Nanotech,2012,12:439–445
    90 Wang C,de Krafft KE,Lin W.J Am Chem Soc,2012,134:7211–7214
    91 Toyao T,Saito M,Dohshi S,Mochizuki K,Iwata M,Higashimura H,Horiuchi Y,Matsuoka M.Chem Commun,2014,50:6779–6781
    92 Pullen S,Fei H,Orthaber A,Cohen SM,Ott S.J Am Chem Soc,2013,135:16997–17003
    93 Hou CC,Li TT,Cao S,Chen Y,Fu WF.J Mater Chem A,2015,3:10386–10394
    94 Kim D,Whang DR,Park SY.J Am Chem Soc,2016,138:8698–8701
    95 Wu P,Guo X,Cheng L,He C,Wang J,Duan C.Inorg Chem,2016,55:8153–8159
    96 Zhou T,Du Y,Borgna A,Hong J,Wang Y,Han J,Zhang W,Xu R.Energy Environ Sci,2013,6:3229–3234
    97 Sasan K,Lin Q,Mao CY,Feng P.Chem Commun,2014,50:10390–10393
    98 Toyao T,Saito M,Dohshi S,Mochizuki K,Iwata M,Higashimura H,Horiuchi Y,Matsuoka M.Res Chem Intermed,2016,42:7679–7688
    99 Li Z,Xiao JD,Jiang HL.ACS Catal,2016,6:5359–5365
    100 Nasalevich MA,Becker R,Ramos-Fernandez EV,Castellanos S,Veber SL,Fedin MV,Kapteijn F,Reek JNH,van der Vlugt JI,Gascon J.Energy Environ Sci,2015,8:364–375
    101 Meyer K,Bashir S,Llorca J,Idriss H,Ranocchiari M,van Bokhoven JA.Chem Eur J,2016,22:13894–13899
    102 Liu XL,Wang R,Zhang MY,Yuan YP,Xue C.APL Mater,2015,3:104403
    103 Chen YF,Tan LL,Liu JM,Qin S,Xie ZQ,Huang JF,Xu YW,Xiao LM,Su CY.Appl Catal B-Environ,2017,206:426–433
    104 Jin Z,Yang H.Nanoscale Res Lett,2017,12:539–549
    105 Wu P,Jiang M,Li Y,Liu Y,Wang J.J Mater Chem A,2017,5:7833–7838
    106 Feng Y,Chen C,Liu Z,Fei B,Lin P,Li Q,Sun S,Du S.J Mater Chem A,2015,3:7163–7169
    107 Zhao J,Wang Y,Zhou J,Qi P,Li S,Zhang K,Feng X,Wang B,Hu C.J Mater Chem A,2016,4:7174–7177
    108 Wang Y,Yu Y,Li R,Liu H,Zhang W,Ling L,Duan W,Liu B.J Mater Chem A,2017,5:20136–20140
    109 Dong XY,Zhang M,Pei RB,Wang Q,Wei DH,Zang SQ,Fan YT,Mak TCW.Angew Chem Int Ed,2016,55:2073–2077
    110 Zhang ZM,Zhang T,Wang C,Lin Z,Long LS,Lin W.J Am Chem Soc,2015,137:3197–3200
    111 Kong XJ,Lin Z,Zhang ZM,Zhang T,Lin W.Angew Chem Int Ed,2016,55:6411–6416
    112 Guo W,Lv H,Chen Z,Sullivan KP,Lauinger SM,Chi Y,Sumliner JM,Lian T,Hill CL.J Mater Chem A,2016,4:5952–5957
    113 Hu XL,Sun CY,Qin C,Wang XL,Wang HN,Zhou EL,Li WE,Su ZM.Chem Commun,2013,49:3564–3566
    114 Wang G,Sun Q,Liu Y,Huang B,Dai Y,Zhang X,Qin X.Chem Eur J,2015,21:2364–2367
    115 Wang G,Liu Y,Huang B,Qin X,Zhang X,Dai Y.Dalton Trans,2015,44:16238–16241
    116 Horiuchi Y,Toyao T,Miyahara K,Zakary L,Van DD,Kamata Y,Kim TH,Lee SW,Matsuoka M.Chem Commun,2016,52:5190–5193
    117 Chi L,Xu Q,Liang X,Wang J,Su X.Small,2016,12:1351–1358
    118 Paille G,Gomez-Mingot M,Roch-Marchal C,Lassalle-Kaiser B,Mialane P,Fontecave M,Mellot-Draznieks C,Dolbecq A.J Am Chem Soc,2018,140:3613–3618
    119 An Y,Liu Y,An P,Dong J,Xu B,Dai Y,Qin X,Zhang X,Whangbo MH,Huang B.Angew Chem Int Ed,2017,56:3036–3040
    120 Fu Y,Sun D,Chen Y,Huang R,Ding Z,Fu X,Li Z.Angew Chem Int Ed,2012,51:3364–3367
    121 Sun D,Fu Y,Liu W,Ye L,Wang D,Yang L,Fu X,Li Z.Chem Eur J,2013,19:14279–14285
    122 Sun D,Liu W,Qiu M,Zhang Y,Li Z.Chem Commun,2015,51:2056–2059
    123 Lee Y,Kim S,Kang JK,Cohen SM.Chem Commun,2015,51:5735–5738
    124 Wang D,Huang R,Liu W,Sun D,Li Z.ACS Catal,2014,4:4254–4260
    125 Xu HQ,Hu J,Wang D,Li Z,Zhang Q,Luo Y,Yu SH,Jiang HL.J Am Chem Soc,2015,137:13440–13443
    126 Liu Y,Yang Y,Sun Q,Wang Z,Huang B,Dai Y,Qin X,Zhang X.ACS Appl Mater Interfaces,2013,5:7654–7658
    127 Zhang H,Wei J,Dong J,Liu G,Shi L,An P,Zhao G,Kong J,Wang X,Meng X,Zhang J,Ye J.Angew Chem Int Ed,2016,55:14310–14314
    128 Aziz A,Ruiz-Salvador AR,Hernández NC,Calero S,Hamad S,Grau-Crespo R.J Mater Chem A,2017,5:11894–11904
    129 Chen D,Xing H,Wang C,Su Z.J Mater Chem A,2016,4:2657–2662
    130 Luo T,Zhang J,Li W,He Z,Sun X,Shi J,Shao D,Zhang B,Tan X,Han B.ACS Appl Mater Interfaces,2017,9:41594–41598
    131 Wang S,Yao W,Lin J,Ding Z,Wang X.Angew Chem Int Ed,2014,53:1034–1038
    132 Fei H,Sampson MD,Lee Y,Kubiak CP,Cohen SM.Inorg Chem,2015,54:6821–6828
    133 Chambers MB,Wang X,Elgrishi N,Hendon CH,Walsh A,Bonnefoy J,Canivet J,Quadrelli EA,Farrusseng D,Mellot-Draznieks C,Fontecave M.Chem Sus Chem,2015,8:603–608
    134 Zhao J,Wang Q,Sun C,Zheng T,Yan L,Li M,Shao K,Wang X,Su Z.J Mater Chem A,2017,5:12498–12505
    135 Lee Y,Kim S,Fei H,Kang JK,Cohen SM.Chem Commun,2015,51:16549–16552
    136 Wang C,Xie Z,de Krafft KE,Lin W.J Am Chem Soc,2011,133:13445–13454
    137 Kajiwara T,Fujii M,Tsujimoto M,Kobayashi K,Higuchi M,Tanaka K,Kitagawa S.Angew Chem Int Ed,2016,55:2697–2700
    138 Choi KM,Kim D,Rungtaweevoranit B,Trickett CA,Barmanbek JTD,Alshammari AS,Yang P,Yaghi OM.J Am Chem Soc,2017,139:356–362139 Zhang S,Li L,Zhao S,Sun Z,Hong M,Luo J.J Mater Chem A,2015,3:15764–15768
    140 Zhang S,Li L,Zhao S,Sun Z,Luo J.Inorg Chem,2015,54:8375–8379
    141 Ryu UJ,Kim SJ,Lim HK,Kim H,Choi KM,Kang JK.Sci Rep,2017,7:612
    142 Huang R,Peng Y,Wang C,Shi Z,Lin W.Eur J Inorg Chem,2016,2016:4358–4362
    143 Liu Q,Low ZX,Li L,Razmjou A,Wang K,Yao J,Wang H.J Mater Chem A,2013,1:11563–11569
    144 Li R,Hu J,Deng M,Wang H,Wang X,Hu Y,Jiang HL,Jiang J,Zhang Q,Xie Y,Xiong Y.Adv Mater,2014,26:4783–4788
    145 Wang S,Wang X.Appl Catal B-Environ,2015,162:494–500
    146 Wang M,Wang D,Li Z.Appl Catal B-Environ,2016,183:47–52
    147 Yan S,Ouyang S,Xu H,Zhao M,Zhang X,Ye J.J Mater Chem A,2016,4:15126–15133
    148 Crake A,Christoforidis KC,Kafizas A,Zafeiratos S,Petit C.Appl Catal B-Environ,2017,210:131–140
    149 Maina JW,Schütz JA,Grundy L,Des Ligneris E,Yi Z,Kong L,Pozo-Gonzalo C,Ionescu M,Dumée LF.ACS Appl Mater Interfaces,2017,9:35010–35017
    150 Shi L,Wang T,Zhang H,Chang K,Ye J.Adv Funct Mater,2015,25:5360–5367
    151 Wang S,Lin J,Wang X.Phys Chem Chem Phys,2014,16:14656–14660
    152 Liu S,Chen F,Li S,Peng X,Xiong Y.Appl Catal B-Environ,2017,211:1–10
    153 Khaletskaya K,Pougin A,Medishetty R,R?sler C,Wiktor C,Strunk J,Fischer RA.Chem Mater,2015,27:7248–7257
    154 Wang S,Guan BY,Lu Y,Lou XW.J Am Chem Soc,2017,139:17305–17308
    155 de Krafft KE,Wang C,Lin W.Adv Mater,2012,24:2014–2018
    156 Mondal I,Pal U.Phys Chem Chem Phys,2016,18:4780–4788
    157 Xiao JD,Jiang HL.Small,2017,13:1700632
    158 Lan M,Guo RM,Dou Y,Zhou J,Zhou A,Li JR.Nano Energy,2017,33:238–246
    159 Lan Q,Zhang ZM,Qin C,Wang XL,Li YG,Tan HQ,Wang EB.Chem Eur J,2016,22:15513–15520
    160 Chen Y,Wang D,Deng X,Li Z.Catal Sci Technol,2017,7:4893–4904
    161 Yu X,Wang L,Cohen SM.Cryst Eng Comm,2017,19:4126–4136
    162 Wang W,Xu X,Zhou W,Shao Z.Adv Sci,2017,4:1600371
    163 Maina JW,Pozo-Gonzalo C,Kong L,Schütz J,Hill M,Dumée LF.Mater Horiz,2017,4:345–361
    164 Wang H,Zhu QL,Zou R,Xu Q.Chem,2017,2:52–80
    165 Kaneti YV,Tang J,Salunkhe RR,Jiang X,Yu A,Wu KCW,Yamauchi Y.Adv Mater,2017,29:1604898
    166 Li Y,Xu H,Ouyang S,Ye J.Phys Chem Chem Phys,2016,18:7563–7572
    167 Falcaro P,Ricco R,Yazdi A,Imaz I,Furukawa S,Maspoch D,Ameloot R,Evans JD,Doonan CJ.Coordin Chem Rev,2016,307:237–254
    168 Dhakshinamoorthy A,Asiri AM,García H.Angew Chem Int Ed,2016,55:5414–5445
    169 Babu VJ,Vempati S,Uyar T,Ramakrishna S.Phys Chem Chem Phys,2015,17:2960–2986
    170 Wang S,Wang X.Small,2015,11:3097–3112
    171 Huang G,Chen Y,Jiang H.Acta Chim Sin,2016,74:113–129
    172 Yang Q,Xu Q,Jiang HL.Chem Soc Rev,2017,46:4774–4808
    173 Jiao L,Wang Y,Jiang HL,Xu Q.Adv Mater,2017,112:1703663
    174 Zhu J,Li PZ,Guo W,Zhao Y,Zou R.Coordin Chem Rev,2018,359:80–101
    175 Liang Z,Qu C,Xia D,Zou R,Xu Q.Angew Chem Int Ed,2018,doi:10.1002/anie.201800269
    176 Fang X,Shang Q,Wang Y,Jiao L,Yao T,Li Y,Zhang Q,Luo Y,Jiang HL.Adv Mater,2018,30:1705112
    177 Liu H,Xu C,Li D,Jiang HL.Angew Chem Int Ed,2018,57:5379–5383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700