可控还原电位的镍催化剂在硅纳米线上的二氧化碳光还原(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tuning redox potentials of CO_2 reduction catalysts for carbon photofixation by Si nanowires
  • 作者:刘睿 ; Carolynn ; Stephani ; Kian ; L.Tan ; 王敦伟
  • 英文作者:Rui Liu;Carolynn Stephani;Kian L.Tan;Dunwei Wang;Merkert Chemistry Center, Department of Chemistry, Boston College,Chestnut Hill, MA 02467, USA;Joint Center for Artificial Photosynthesis, California Institute of Technology;
  • 中文刊名:SCMA
  • 英文刊名:Science China Materials
  • 机构:Merkert Chemistry Center, Department of Chemistry, Boston College,Chestnut Hill, MA 02467, USA;Joint Center for Artificial Photosynthesis, California Institute of Technology;
  • 出版日期:2015-07-15
  • 出版单位:Science China Materials
  • 年:2015
  • 期:v.58
  • 基金:The project was supported in part by US National Science Foundation (DMR 1055762);; Wang D and US National Institute of General Medical Sciences (R01GM08758)
  • 语种:英文;
  • 页:SCMA201507001
  • 页数:6
  • CN:07
  • ISSN:10-1236/TB
  • 分类号:7-12
摘要
硅纳米线在吸收光之后还原催化剂镍离子,从而引发以二氧化碳为碳原料的炔烃羧基化反应.镍催化剂的还原态产物在这一固碳反应中能够非常高效地将4-辛炔羧酸化.配位体的给电子基团和吸电子基团的能力不同,将会影响催化剂的氧化还原电位.还原电位由于构成镍催化剂的配位体不同,控制在-1.35到-0.51 V(相对于甘汞电极电位)之间.这种新的光催化反应本质上是利用了硅纳米线在光照时产生的光电子从半导体界面转移到催化剂的现象,通过改变催化剂的配位体实现控制催化剂的还原电位.此方法为实现设计可持续性高效的二氧化碳还原反应提供了更多的选择.
        Si nanowires(Si NWs) are shown to absorb visible light to reduce Ni catalysts into Ni0 compounds, enabling alkyne carboxylation reactions with CO2 as a carbon feedstock. The reduced Ni catalysts are effective in CO2 fixation through a 4-octyne carboxylation reaction. The reduction potentials of the Ni catalysts can be tuned from-1.35 to-0.51 V(vs. saturated calomel electrode) by altering the binding ligands. The results shed light on the nature of charge transfer from Si NWs to the catalyst for this new class of photocatalytic reactions. By controlling the CO2 reduction potential of the catalysts with carefully ligand designs, it will bring more opportunities and options to realize the highly selective, effective and sustainable CO2 reduction in the future.
引文
1 Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,238:37-38
    2 Benson EE,Kubiak CP,Sathrum AJ,et al.Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels.Chem Soc Rev,2009,38:89-99
    3 Boettcher SW,Warren EL,Putnam MC,et al.Photoelectrochemical hydrogen evolution using Si microwire arrays.J Am Chem Soc,2011,133:1216-1219
    4 Reece SY,Hamel JA,Sung K,et al.Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.Science,2011,334:645-648
    5 Mc Kone JR,Marinescu SC,Brunschwig BS,et al.Earth-abundant hydrogen evolution electrocatalysts.Chem Sci,2014,5:865-878
    6 Liu R,Lin YJ,Chou LY,et al.Water splitting using tungsten oxide prepared by atomic layer deposition and stabilized by oxygen-evolving catalyst.Angew Chem Int Ed,2011,50:499-502
    7 Tilley SD,Cornuz M,Sivula K,et al.Light-induced water splitting with hematite:improved nanostructure and iridium oxide catalysis.Angew Chem Int Ed,2010,49:6405-6408
    8 Mc Crory CCL,Jung SH,Peters JC,et al.Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.J Am Chem Soc,2013,135:16977-16987
    9 Dubois MR,Dubois DL.Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.Acc Chem Res,2009,42:1974-1982
    10 Morris AJ,Meyer GJ,Fujita E.Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.Acc Chem Res,2009,42:1983-1994
    11 Kumar B,Llorente M,Froehlich J,et al.Photochemical and photoelectrochemical reduction of CO2.Annu Rev Phys Chem,2012,63:541-569
    12 Kuhl KP,Cave ER,Abram DN,et al.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces.Energ Environ Sci,2012,5:7050-7059
    13 Roy SC,Varghese OK,Paulose M,et al.Toward solar fuels:photocatalytic conversion of carbon dioxide to hydrocarbons.Acs Nano,2010,4:1259-1278
    14 Barton EE,Rampulla DM,Bocarsly AB.Selective solar-driven reduction of CO2 to methanol using a catalyzed p-Ga P based photoelectrochemical cell.J Am Chem Soc,2008,130:6342-6344
    15 Kumar B,Smieja JM,Kubiak CP.Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl:photovoltages exceeding 600m V for the selective reduction of CO2 to CO.J Phys Chem C,2010,114:14220-14223
    16 Chardon-Noblat S,Deronzier A,Ziessel R,et al.Electroreduction of CO,catalyzed by polymeric[Ru(bpy)(CO)2]n films in aqueous media:parameters influencing the reaction selectivity.J Electroanal Chem,1998,44:253-260
    17 Liu R,Yuan GB,Joe CL,et al.Silicon nanowires as photoelectrodes for carbon dioxide fixation.Angew Chem Int Ed,2012,51:6709-6712
    18 Liu R,Stephani C,Han JJ,et al.Silicon nanowires show improved performance as photocathode for catalyzed carbon dioxide photofixation.Angew Chem Int Ed,2013,52:4225-4228
    19 Derien S,Dunach E,Perichon J.From stoichiometry to catalysis-electroreductive coupling of alkynes and carbon-dioxide with nickel bipyridine complexes-magnesium-ions as the key for catalysis.J Am Chem Soc,1991,113:8447-8454
    20 Sato S,Morikawa T,Kajino T,Ishitani OA.Highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light.Angew Chem Int Ed,2013,52:988-992
    21 Wong KT,Chen RT,Fang FC,et al.4,5-Diazafluorene-incorporated ter(9,9-diarylfluorene):a novel molecular doping strategy for improving the electron injection property of a highly efficient OLED blue emitter.Org Lett,2005,7:1979-1982
    22 Peng KQ,Xu Y,Wu Y,et al.Aligned single-crystalline Si nanowire arrays for photovoltaic applications.Small,2005,1:1062-1067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700