石墨相g-C_3N_4聚合物半导体光催化剂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphitic Carbon Nitride Polymeric Semiconductor Photocatalyst
  • 作者:吴海波 ; 张婷婷 ; 刘芹 ; 李靖
  • 英文作者:WU Hai-bo;ZHANG Ting-ting;LIU Qin;LI Jing;School of Chemistry and Chemical Engineering, Xuzhou Institute of Technology;
  • 关键词:石墨相氮化碳 ; 半导体 ; 光催化
  • 英文关键词:graphitic carbon nitride;;semiconductor;;photocatalysis
  • 中文刊名:GXHG
  • 英文刊名:Technology & Development of Chemical Industry
  • 机构:徐州工程学院化学化工学院;
  • 出版日期:2016-04-15
  • 出版单位:化工技术与开发
  • 年:2016
  • 期:v.45;No.263
  • 基金:江苏省高校自然科学研究面上项目(14KJB430022);; 江苏省大学生实践创新训练计划项目(201511998047Y);; 徐州工程学院重点培育项目(XKY2014103)
  • 语种:中文;
  • 页:GXHG201604011
  • 页数:3
  • CN:04
  • ISSN:45-1306/TQ
  • 分类号:42-44
摘要
半导体光催化技术通过太阳能驱动化学反应净化水体、处理土壤和空气污染物、催化制氢,在解决环境污染和能源短缺等问题上具有重要的应用前景。在光催化技术的推广应用过程中,一种仅由C、N两种元素通过sp~2杂化组成的共轭半导体氮化碳,因其独特的半导体能带结构和优异的化学稳定性,被作为一类不含金属成分的新型可见光催化剂,引起人们的广泛关注。本文介绍石墨相氮化碳的结构、性质及其在光催化领域的一些研究进展。
        Semiconductor photocatalysis could drive photocatalytic oxidation-reduction reactions to purify water, remove pollutions in soil and air, catalytic hydrogen production via sunlight. Semiconductor photocatalytic technology was regarded as a effective path to deal with the problem o f environment pollution and energy shortage, In the process of application of photocatalysis technology, conjugated graphitic carbon nitride was a new type of visible light catalyst, only consisted of C and N metal-free elements which through sp~2 hybridization. g-C_3N_4 was widely used owing to the fact of unique semiconductor band structure and excellent chemical stability. In this paper, g-C_3N_4 was described around structure, properties and research progress in photocatalytic field.
引文
[1]Teter D,Hemley R.Low-Compressibilitynitrides[J].Science,1996(271):53-55.
    [2]吴星瞳.石墨相氮化碳微纳米材料的制备及光催化性能研究[D]长春:吉林大学,2015.
    [3]Thomas A,Fischer A,Goettmann F,et al.Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts[J].Journal of Materials Chemistry,2008,18(41):4893-4908.
    [4]Kroke E,Sehwarz M,Horath-Bordon E,et al.Tri-s-triazine derivatives.Part I.from trichloro-tri-s-triazine to graphitic C3N4 structures[J].New Journal of Chemistry,2002,26(5):508-512.
    [5]Frank S.,Bard A.Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at emiconductor powders[J].Journal Physics Chemistry,1977,81(15):1484-1488.
    [6]Wang Z.Zinc oxide nanostructures:growth,properties and applications[J].Journal Physics Condensed Matter,2004,16(25):R829-R858.
    [7]Wang X,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials,2009,8(1):76-80.
    [8]张金水,王博,王心晨.氮化碳聚合物半导体光催化[J].化学进展,2014,26(1):19-29.
    [9]郑华荣,张金水,王心晨,付贤智.二氨基马来腈共聚合改性氮化碳光催化剂[J].物理化学学报,2012,28(10):120-126.
    [10]Huang C,Chen C,Zhang M,et al.Carbon-doped BN nanosheets for metal-free photoredox catalysis[J].Nat.Commun.,2015(6):7698.
    [11]Zhang J,Wang X.Solar Water Splitting atλ=600 nm:a step closer to sustainable hydrogen production[J].Angewandte Chemie International Edition,2015(54):7230-7232..
    [12]Min S,Lu G.Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for Highly efficient hydrogen evolution under 550 nm irradiation[J].Journal of Physical Chemistry C,2012(116):19644.
    [13]Cui Y,Ding Z,Fu X,Wang X.Solution-construction of conjugated carbon nitride nanoarchitectures at low temperatures for photoredox catalysis[J].Angewandte Chemie International Edition,2012(51):11814.
    [14]Takanabe K,Kamata K,Wang X,et al.Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine[J].Physical Chemistry Chemical Physics,2010(12):13020.
    [15]Sun L,Zhao X,Jia C,et al.Enhanced visible-light photocatalytic activity of g-C3N4-Zn WO4 by fabricating a heterojunction:investigation based on experimental and theoretical studies[J].Journal Materials Chemistry,2012(22):23428.
    [16]Pan H,Li X,Zhuang Z,Zhang C.g-C3N4/Si O2-HNb3O8composites with enhanced photocatalytic activities for rhodamine B degradation under visible light[J].Journal of Molecular Catalysis A:Chemical,2011(345):90-95.
    [17]Yan S,Lv S,Li Z,et al.Organic–inorganic composite photocatalyst of g-C3N4 and Ta ON with improved visible light photocatalytic activities[J].Dalton Transactions,2010(39):1488.
    [18]Sun J,Yuan Y,Qiu L,et al.Fabrication of composite photocatalyst g-C3N4-Zn O and enhancement of photocatalytic activity under visible light[J].Dalton Transactions,2012(41):6756.
    [19]Di Y,Wang X,Thomas A,et al.Making metal carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light[J].Chem.Cat.Chem.,2010(2):834.
    [20]Li X,Wang X,Antonietti M.Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles:hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J].Chemical Science,2012(3):2170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700