二维自组装聚合制备寡层有机-氧化硅纳米杂化材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Few-layered Organic-silica Hybrid Nanomaterials by Two-dimensional Self-assembly and Polymerization
  • 作者:武星 ; 江晨 ; 张娜 ; 陈放 ; 白玮 ; 白如科
  • 英文作者:Xing Wu;Chen Jiang;Na Zhang;Fang Chen;Wei Bai;Ru-ke Bai;Key Laboratory of Soft Matter Chemistry,Chinese Academy of Sciences;Department of Polymer Science and Engineering,University of Science and Technology of China;Institute of Physical Science and Information TechnologyAnhui University;
  • 关键词:两亲性硅氧烷 ; 二维自组装聚合 ; 纳米杂化材料 ; 寡层
  • 英文关键词:Amphiphilic organosilane;;2D self-assembly and polymerization;;Hybrid nanomaterials;;Few-layered
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中国科学院软物质化学重点实验室中国科学技术大学化学与材料科学学院;安徽大学物质科学与信息技术研究院;
  • 出版日期:2018-08-15 15:21
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国家自然科学基金(基金号21674101)资助项目
  • 语种:中文;
  • 页:GFXB201812004
  • 页数:7
  • CN:12
  • ISSN:11-1857/O6
  • 分类号:49-55
摘要
设计、合成了一种两亲性硅氧烷前驱体(PABI),一端为羧基,另一端为具有反应性的硅氧烷基团.利用两亲性分子在水溶液中的自组装特性,研究了它的"二维自组装聚合".实验结果表明,PABI的二维自组装聚合行为与介质、碱的种类和碱的用量等因素有关.我们发现用四甲基胍(TMG)为碱时,PABI在水中通过自组装聚合可以形成寡层二维有机-氧化硅纳米杂化材料.透射电子显微镜(TEM)和原子力显微镜(AFM)的测试结果显示,片层的尺寸为几百纳米到几微米,片层的厚度为6~9 nm.当在水/有机溶剂(如DMSO、DMF、THF或MeOH)的混合溶液中进行自组装聚合时,均未得到层状结构的杂化材料.当用三乙胺和氢氧化钠为碱时,在水中只能得到多层堆积的杂化材料.本研究结果表明,通过二维自组装聚合,可以获得寡层甚至单层二维有机-氧化硅杂化材料.
        It is still a challenge to prepare single-layered or few-layered organic-silica hybrid nanomaterials now.In this study, we designed and synthesized an amphiphilic organosilane(PABI) with phenyl urea and carboxyl groups, and investigated its two-dimensional self-assembly and polymerization. The spontaneous formation of few-layered organic-silica hybrid nanomaterials was driven by synergetic association of the hydrophobic interactions, π-π stacking interactions, hydrogen-bond interactions, electrostatic repulsion and hydrolytic condensation of the precursor under the appropriate conditions. The results indicated that the two-dimensional self-assembly and the polymerization were related to the experimental conditions, such as the medium, the type and the content of the base. The structure of the hybrid nanomaterials was demonstrated by nuclear magnetic resonance(1 H-NMR), Fourier transform infrared spectroscopy(FTIR) and 29 Si cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS 29 Si-NMR). The morphology of the hybrid nanomaterials was confirmed by electron microscopy. Two or three layered organic-silica hybrid nanomaterials were obtained by two-dimensional self-assembly and polymerization of PABI in water when using 1,1,3,3-tetramethylguanidine(TMG) as a base under suitable condition(mole ratio of TMG to PABI was 1.1:1 or 1.5:1). The laminated sheet of the materials, with lateral size ranging from several hundred nanometers to several micrometers and thickness of 6 –9 nm, was demonstrated by transmission electron microscopy(TEM) and atomic force microscopy(AFM).However, when the content of TMG(mole ratio of TMG to PABI was 2:1) was too high, irregular aggregates were formed. In addition, irregular hybrid materials were obtained when organic solvents, such as DMF, DMSO, THF and MeOH, were respectively added to water. Moreover, when trimethylamine(TEA) and sodium hydroxide(NaOH) were used as bases, thick laminated sheets were obtained, and the result was consistent with X-ray diffraction spectrogram(XRD). These results are of great significance for preparation of few-layered or singlelayered organic-silica hybrid nanomaterials.
引文
1Fahmi A,Pietsch T,Mendoza C,Cheval N.Mater Today,2009,12(5):44-50
    2Lambert S,Tran K Y,Arrachart G,Noville F,Henrist C,Bied C,Moreau J J E,Man M W C,Heinrichs B.Micropor Mesopor Mat,2008,115(3):609-617
    3Sanchez C,Belleville P,Popall M,Nicole L.Chem Soc Rev,2011,40(2):696-753
    4Wang F K,Lu X,He C.J Mater Chem,2011,21(9):2775-2782
    5Yu X,Zhong S,Li X,Tu Y,Wang S,Horn R M V,Ni C,Pochan D J,Quirk R P,Wesdemiotis C,Zhang W B,Cheng S Z D.J Am Chem Soc,2010,132(47):16741-16744
    6Toyodome H,Kaneko Y,Shikinaka K,Iyi L.Polymer,2012,53(26):6021-6026
    7Chemtob A,Ni L,Croutxé-Barghorn C,Boury B.Chem Eur J,2014,20(7):1790-1806
    8Mehdi A,Reye C,Corriu R.Chem Soc Rev,2011,40(2):563-574
    9Shimojima A,Kuroda K.Chem Rec,2006,6(2):53-63
    10Kuroda K,Shimojima A,Kawahara K,Wakabayashi R,Tamura Y,Asakura Y,Kitahara M.Chem Mater,2013,26(1):211-220
    11Croutxé-Barghorn C,Chemtob A,Ni L,Deroche I.Polym Int,2017,66(5):640-646
    12Besson E,Mehdi A,ReyéC,Gaveaub P,Corriua R J P.Dalton Trans,2010,39(32):7534-7539
    13Jiang J,Lima O V,Pei Y,Zeng X C,Tan L,Forsythe E.J Am Chem Soc,2009,131(3):900-901
    14Besnard R,Arrachart G,Cambedouzou J,Pellet-Rostaing S.RSC Adv,2015,5(71):57521-57531
    15Besnard R,Arrachart G,Cambedouzou J,Pellet-Rostaing S.Langmuir,2016,32(18):4624-4634
    16Mouawia R,Mehdi A,ReyéC,Corriu R.J Mater Chem,2007,17(7):616-618
    17Mouawia R,Mehdi A,ReyéC,Corriu R J P.J Mater Chem,2008,18(17):2028-2035
    18Besson E,Mehdi A,Chollet H,RéyéC,Guilard R,Corriu R J P.J Mater Chem,2008,18(11):1193-1195
    19Jiang J,Lima O V,Pei Y,Jiang Z,Chen Z,Yu C,Wang J,Zeng X C,Forsythe E,Tan L.ACS Nano,2010,4(7):3773-3780
    20Li H,Kang J,Yang J,Wu B.J Phys Chem C,2016,120(30):16907-16912
    21Alauzun J,Mehdi A,ReyéC,Corriu R.J Mater Chem,2005,15(8):841-843
    22Ni B,Huang M,Chen Z,Chen Y,Hsu C,Li Y,Pochan D,Zhang W,Cheng S Z D,Dong X.J Am Chem Soc,2015,137(4):1392-1395
    23Barboiu M,Cerneaux S,van der Lee A,Vaughan G.J Am Chem Soc,2004,126(11):3545-3550
    24Zhang N,Wang T,Wu X,Jiang C,Zhang T,Jin B,Ji H,Bai W,Bai R.ACS Nano,2017,11(7):7223-7229
    25Li Z,Tang M,Dai J,Wang T,Wang Z,Bai W,Bai R.Macromolecules,2017,50(11):4292-4299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700