聚焦离子束扫描电镜在石油地质研究中的综合应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:FIB-SEM applications in petroleum geology research
  • 作者:王晓琦 ; 金旭 ; 李建明 ; 焦航 ; 吴松涛 ; 刘晓丹
  • 英文作者:WANG Xiao-qi;JIN Xu;LI Jian-ming;JIAO Hang;WU Song-tao;LIU Xiao-dan;PetroChina Research Institute of Petroleum Exploration & Development,National Energy Center of Tight Oil & Gas,and CNPC Key Laboratory of Oil and Gas Reservoirs;
  • 关键词:聚焦离子束扫描电镜 ; 低加速电压成像 ; 三维切片成像 ; 微纳米加工 ; 扫描透射显微成像
  • 英文关键词:FIB-SEM;;low voltage imaging;;3D slice and view;;micro-and nano-machining;;scanning transmission electron microscopy
  • 中文刊名:DZXV
  • 英文刊名:Journal of Chinese Electron Microscopy Society
  • 机构:中国石油勘探开发研究院国家能源致密油气研发中心中国石油天然气集团公司油气储层重点实验室;
  • 出版日期:2019-06-14
  • 出版单位:电子显微学报
  • 年:2019
  • 期:v.38;No.203
  • 基金:国家重点基础研究发展计划(973项目)(No.2014CB239000);; 国家科技重大专项专题项目(No.2016ZX05046001-001)
  • 语种:中文;
  • 页:DZXV201903019
  • 页数:17
  • CN:03
  • ISSN:11-2295/TN
  • 分类号:105-121
摘要
聚焦离子束扫描电镜(FIB-SEM),以其高分辨率电子束成像及高强度聚焦离子束微纳米级精密加工功能,成为非常规油气储层研究的重要表征手段,推动了我国非常规油气的勘探开发进程,并促进石油地质学开启了全新的领域—纳米地质学。本文重点介绍了FIB-SEM在石油地质研究中的综合应用以及创新性开发情况。FIBSEM的二维大面积成像与三维切片-成像分析可有效解决岩石样品非均质性强的表征难题,并可对岩石内部的孔隙、微裂缝、矿物、有机质和残留油等五大要素进行全面的成像分析,为数字岩心的构建提供具有纳米级分辨率的高质量原始数据。FIB-SEM强大的微纳加工功能,为下一代储层矿物分析、地球化学微观分析等技术的开发提供了制样手段。另外,FIB-SEM可以集成多种先进分析技术,形成集高分辨率成像、物理化学测试为一体的石油地质综合分析平台,应用前景广阔。
        Focused ion beam-scanning electron microscope( FIB-SEM) has become one of the most important characterization methods for unconventional Oil & Gas reservoirs,due to its high resolution electron-beam imaging and high intensity ion-beam microand nano-machining functions. This method promotes the exploration and exploitation of unconventional oil & gas in China. It also helps bring petroleum geology into a new field-Nano Geology. In this paper,the applications and innovative development of FIB-SEM in petroleum geology research are summarized. 2D large-area stitching imaging and 3D slice & view techniques provide effective solutions for the representative problems caused by high heterogeneity of rock samples. Five key factors including pores,micro-cracks,minerals,organic matters,and residual oil can be simultaneously imaged and analyzed,which offers high quality raw data with nanometer resolution for digital rock analysis. The powerful micro-and nano-machining ability of FIB-SEM makes the development of next generation microscale reservoir analysis and geochemistry analysis techniques possible. Meanwhile,combined with various analysis techniques,FIB-SEM can become a highly compact petroleum geological characterization platform for high resolution imaging and physical & chemical tests.
引文
[1]邹才能,陶士振,侯连华,等.非常规油气地质[M].2版.北京:地质出版社,2013.
    [2]邹才能,杨智,何东博,等.常规-非常规天然气理论、技术及前景[J].石油勘探与开发,2018,45(4):1-13.
    [3]朱如凯,金旭,王晓琦,等.复杂储层多尺度数字岩石评价[J].地球科学,2018,43(5):1-10.
    [4]张汝藩,杨主恩,等著.扫描电镜与微观地质研究[M].北京:学苑出版社,1999.
    [5]江丹,蔡周荣,向俊洋.下扬子芜湖地区古生界泥页岩微孔-超微孔隙发育特征及其意义[J].电子显微学报,2017,36(3):250-257.
    [6]白云云,孙卫,韩进.鄂尔多斯盆地华庆油田长6储层水驱油特征及主控因素研究[J].电子显微学报,2018,37(4):348-354.
    [7]焦淑静,张慧,薛东川,等.泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J].电子显微学报,2018,37(2):137-144.
    [8]韩伟,肖思群.聚焦离子束(FIB)及其应用[J].中国材料进展,2013,32(12):716-727.
    [9] WIRTH R. Focused ion beam(FIB)combined with SEM and TEM:advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale[J].Chemical Geology,2009,261:217-229.
    [10] CURTIS M E,AMBROSE R J,SONDERGELD C H,et al. Investigating the structure of gas shales on the nanoscale by FIB/SEM tomography and STEM imaging.http://www. ogs. ou. edu/MEETINGS/Presentations/Shales Moving 2011/Curtis Micro.pdf[EB/OL].
    [11] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrockpores[J]. AAPG bulletin,2012,96(6):1071-1098.
    [12] LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology, genesis, and distribution of nanometerscale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research,2009,79(12):848-861.
    [13] BERNARD S,HORSFIELD B,SCHULZ H M,et al.Geochemical evolution of organic-rich shales with increasing maturity:a STXM and TEM study of the Posidonia Shale(Lower Toarcian,northern Germany)[J]. Marine and Petroleum Geology,2012,31:70-89.
    [14] Helios G4 UX Dual BeamTMDatasheet. https://www.fei.com/products/dualbeam/helios-g4-ux-for-materialsscience/[EB/OL].
    [15] Technology Note:ZEISS Crossbeam 550. https://www.zeiss. com/microscopy/int/products/fib-sem-instruments/crossbeam.html[EB/OL].
    [16] XEIA 3 brochure. https://www. tescan. com/en-us/technology/xeia3[EB/OL].
    [17] JIB-4700F Multi beam system introduction. https://www. jeol. co. jp/en/products/detail/JIB-4700F. html[EB/OL].
    [18]丁华杰,崔益民,王荣明.聚焦离子束系统原理、应用及进展[J].电子显微学报,2008,27(3):243-249.
    [19]李金华,潘永信.透射电子显微镜在地球科学研究中的应用[J].中国科学:地球科学,2015,45(1):1-24.
    [20]唐晓山.荷电效应对扫描电子显微镜图像的影响及其解决方法[J].湛江师范学院学报,2008,29(6):33-35.
    [21]周维列,王中林.扫描电子显微学及在纳米技术中的应用[M].北京:高等教育出版社,2007.
    [22] REED S J. Scanning electron microscopy in Geology[M]. 2ndEdition. UK:Cambridge University Press,1993.
    [23] LIU Jingyue. High-resolution and low-voltage FE-SEM imaging and microanalysis in materials characterization[J]. Materials Characterization,2000,44:353-363.
    [24] JOSA V G, CASTELLANO G, BERTOLINO S R.Quantification by SEM-EDS in uncoated non-conducting samples[J]. Radiation Physics and Chemistry,2013,88:32-37.
    [25] KLAVER J,DESBOIS G,URAI J L,et al. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany[J].International Journal of Coal Geology,2012,103(23):12-25.
    [26] WANG Z, JIN X, WANG X, et al. Pore-scale geometry effects on gas permeability in shale[J].Journal of Natural Gas Science&Engineering,2016,34:948-957.
    [27] HAO F,ZOU H,LU Y. Mechanisms of shale gas storage:implications for shale gas exploration in China[J]. AAPG Bulletin,2013,97(8):1325-1346.
    [28] BERA B, GUNDA N S K, MITRA S K, et al.Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy[J]. Microscopy and Microanalysis,2012,18:171-178.
    [29] CHALMERS G R, BUSTIN R M, POWER I M.Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett,Woodfod,Haynesville,Marcellus,and Doig units[J]. AAPG Bulletin,2012,96(6):1099-1119.
    [30]张星,曹安民,万立骏.纳米电催化剂的原位透射电镜表征[J].电子显微学报,2018,37(5):490-499.
    [31] BERA B,MITRA S K,VICK D. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beam-scanning electron microscopy(FIBSEM)[J]. Micron,2011,42:412-418.
    [32] VOLKERT C A, MINOR A M. Focused ion beam microscopy and micromachining[J]. MRS Bulletin,2007,389-395.
    [33]王晓琦,孙亮,朱如凯,等.利用电子束荷电效应评价致密储集层储集空间——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].石油勘探与开发,2015,42(4):472-480.
    [34]李超,杨光.扫描透射电子显微镜及电子能量损失谱的原理及应用[J].物理,2014,43(9):597-605.
    [35]陈振宇,周剑雄.扫描电镜-电子探针中的阴极发光技术在地质学中的某些应用研究[J].电子显微学报,2004,23(4):463-463.
    [36]周科子.扫描电镜中的阴极发光技术及其在地学中的应用[J].电子显微学报,1985,4(3):31-41.
    [37]代世峰,唐跃刚,杨建业,等.烃源岩生烃性的飞行时间二次离子质谱研究[J].中国矿业大学学报,2000,29(6):581-586.
    [38]李荣西,周生斌.矿物中单个有机包裹体测试与TOF_SIMS技术的应用[J].矿物学报,2000,20(2):172-176.
    [39]张继成,唐永建,吴卫东.聚焦离子束系统在微米/纳米加工技术中的应用[J].材料导报,2006(S2):40-43+46.
    [40] TOMIYASU B,FUKUJU I,KOMATSUBARA H,et al.High spatial resolution 3D analysis of materials using gallium focused ion beam secondary ion mass spectrometry(FIB-SIMS)[J]. Nuclear Instruments&Methods in Physics Research,1998,236:1028-1033.
    [41]李妍,李振兴,侯爱琴,等.扫描电镜_拉曼光谱联用在文物研究中的应用[J].分析仪器,2017,6:34-38.
    [42]刘俊来,曹淑云,邹运鑫,等.岩石电子背散射(EBSD)组构分析及应用[J].地质通报,2008,27(10):1638-1645.
    [43]刘亚非,王立社,魏小燕,等.应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征[J].岩矿测试,2016,35(1):48-55.
    [44]徐海军,金淑燕,郑伯让.岩石组构学研究的最新技术-电子背散射衍射(EBSD)[J].现代地质,2007,21(2):213-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700