湿地植物丝瓣剪秋罗幼苗对温度和土壤养分的表型可塑性响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phenotypic plasticity of seedlings of Lychnis wilfordii (Regel) Maxim response to temperature and soil nutrient conditions
  • 作者:包宇 ; 杨苗 ; 唐占辉
  • 英文作者:BAO Yu;YANG Miao;TANG Zhan-hui;State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration;School of Environment, Northeast Normal University;
  • 关键词:丝瓣剪秋罗 ; 幼苗 ; 表型可塑性 ; 温度 ; 土壤养分
  • 英文关键词:L.wilfordii(Regel) Maxim;;seedlings;;phenotype plasticity;;temperature;;soil nutrient
  • 中文刊名:SWXZ
  • 英文刊名:Journal of Biology
  • 机构:国家环境保护湿地生态与植被恢复重点实验室;东北师范大学环境学院;
  • 出版日期:2018-09-21 10:54
  • 出版单位:生物学杂志
  • 年:2019
  • 期:v.36;No.208
  • 基金:国家自然科学基金项目(31470446);; 国家环境保护湿地生态与植被恢复重点实验室开放课题(130028629)
  • 语种:中文;
  • 页:SWXZ201902012
  • 页数:5
  • CN:02
  • ISSN:34-1081/Q
  • 分类号:58-62
摘要
选取温度和土壤养分两个非生物因子进行模拟控制实验,探究湿地植物丝瓣剪秋罗幼苗的生长、生物量积累和分配及相对生长率对这两种因子变化的表型可塑性响应规律。结果表明:随着温度的增高,丝瓣剪秋罗幼苗的株高、总生物量、相对生长率增大,但根冠比随温度增高而降低;温度变化对株高和相对生长率的影响最为显著,相对生长率可塑性最强。在土壤养分增加的条件下,丝瓣剪秋罗幼苗的株高、总生物量、相对生长率均增加,但根冠比随养分增高而降低;土壤养分条件变化对株高及根冠比的影响最为显著,根冠比可塑性最强。实验结果也表明,丝瓣剪秋罗幼苗对温度变化的可塑性高于对土壤养分变化的可塑性。
        The aim of this study is to elucidate the response of the seedlings of L. wilfordii(Regel) Maxim to temperature and soil nutrient treatments. The effects of non-biological environmental factors on the phenotypic plasticity of the plant height, biomass accumulation, biomass allocation and the relative growth rate of L. wilfordii seedlings were studied. The results showed that the plant height, total biomass, relative growth rate and root/shoot ratio of the seedlings were different under different temperature conditions. The growth performance were promoted with the temperature increasing, but the root/shoot ratio decreased with increasing temperature. The effect of temperature conditions on plant height and relative growth rate was the most significant. The plant height, total biomass, relative growth rate and root/shoot ratio of the seedlings were different under different soil nutrient conditions. The growth performance were also promoted with the soil nutrient increasing, excepting for root/shoot ratio. The effects of soil nutrient on plant height and root/shoot ratio were significant. The plasticity of relative growth rate was the strongest under different temperature conditions. Under different soil nutrient treatments, the plasticity of root/shoot ratio was the strongest. The results showed that the plasticity of the L.wilfordii(Regel) Maxim seedlings to temperature change is higher than that to soil nutrient change.
引文
[1]SCHLICHTING C D, PIGLIUCCI M. Control of phenotypic plasticity via regulatory genes [J]. The American Naturalist, 1993, 142(2): 366-370.
    [2]PORTSMUTH A, NIINEMTS U. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance [J]. Functional Ecology, 2007, 21(1): 61-77.
    [3]PIGLIUCCI M. Phenotypic plasticiy: beyond nature and nurture [M]. Baltimore: JHU Press, 2001: 3-10.
    [4]GOWER S T, GHOLZ H L, NAKANE K, et al. Production and carbon allocation patterns of pine forests [J]. Ecological Bulletins, 1994, 43: 115-135.
    [5]BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants [J]. Advances in Genetics, 1965, 13(1): 115-155.
    [6]武高林, 杜国祯. 植物形态生长对策研究进展[J]. 世界科技研究与发展, 2007, 29(4):47-51.
    [7]邱天, 鞠淼, 徐嘉咛, 等. 芦苇生长与物质生产对盐碱胁迫的可塑性响应 [J]. 东北师大学报(自然科学版), 2013, 45(1): 108-112.
    [8]李有志. 小叶章和芦苇种子萌发以及幼苗生长对环境因子的响应研究 [D]. 长沙:湖南农业大学, 2007.
    [9]闫长平, 马延吉. 人类产业活动对湿地环境的影响研究进展 [J]. 湿地科学, 2010, 8(1): 98-104.
    [10]汤袁, 卜兆君, 陈祥义, 等. 长白山金川泥炭地圆叶茅膏菜的生态可塑性 [J]. 湿地科学, 2009, 7(4): 358-362.
    [11]傅沛云. 东北植物检索表 [M]. 北京: 科学出版社. 1995:141-160.
    [12]刘明财, 崔凯峰, 郑明艳. 长白山野生观赏植物引种与栽培试验 [J]. 东北林业大学学报, 2004, 32(4): 22-28.
    [13]冯敏. 大花剪秋萝组织培养技术研究 [D]. 长春:吉林农业大学, 2014.
    [14]肖宁, 李旦, 武永明, 等. 剪秋罗种子催芽及秋水仙碱诱导多倍体研究 [J]. 中国农学通报, 2012, 28(16): 208-214.
    [15]王艳菊. 剪秋罗离体培养再生体系建立及多倍体诱导研究 [D]. 杭州:浙江大学, 2006.
    [16]路宁娜. 不同光照、营养条件下青藏高原东缘10种风毛菊属植物幼苗的可塑性研究 [D]. 兰州:兰州大学, 2008.
    [17]马冰, 卜海燕, 葛文静, 等. 生境和降温对高寒草甸 6 种优势禾本科植物幼苗生长和生物量分配的影响 [J]. 生态学杂志, 2016, 35(11): 2912-2917.
    [18]FALSTER D W M. Plant height and evolutionary games [J]. Trends in Ecology & Evolution, 2003, 18(7): 337-343.
    [19]闫敏华, 陈泮勤, 邓伟, 等. 三江平原气候变暖的进一步认识: 最高和最低气温的变化[J]. 生态环境, 2005, 14(2): 151-156.
    [20]范曾丽. 增温对两种淫羊藿属植物生长发育及生理特性的影响研究 [D]. 重庆:西南大学, 2015.
    [21]段婧, 刘金平. 不同温度下雌雄葎草营养生长期的生长特性 [J]. 草业科学, 2013, 30(3): 418-422.
    [22]GROTKOPP E, REJMANEK M, ROST T L. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species [J]. The American Naturalist, 2002, 159(4): 396-419.
    [23]BLUMENTHAL D. Interrelated causes of plant invasion [J]. Science, 2005, 310(5746): 243-244.
    [24]张凯, 慕小倩, 孙晓玉, 等. 温度变化对油菜及其伴生杂草种苗生长和幼苗生理特性的影响 [J]. 植物生态学报, 2013, 37(12): 1132-1141.
    [25]刘贤赵, 宿庆, 李嘉竹, 等. 控温条件下C3、C4草本植物碳同位素组成对温度的响应 [J]. 生态学报, 2015, 35(10): 3278-3287.
    [26]DAVIDSON R L. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover [J]. Annals of Botany, 1969, 33(3): 561-569.
    [27]武高林, 陈敏, 杜国祯. 营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影[J]. 应用生态学报, 2008, 19(8): 1708-1713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700