局部根系水分胁迫下氮素形态对水稻幼苗生理特性和根系生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of N Forms on Physiological Characteristics and Root Growth of Rice Seedling in Condition of Partial Root Water Stress
  • 作者:高志红 ; 陈晓远 ; 曾越
  • 英文作者:GAO Zhihong;CHEN Xiaoyuan;ZENG Yue;Henry School of Agricultural Science and Engineering, Shaoguan University;
  • 关键词:水稻 ; 局部根系水分胁迫 ; 氮素形态 ; 生理特性
  • 英文关键词:Rice;;Partial root drying;;Nitrogen form;;Physiological characteristic
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:韶关学院英东农业科学与工程学院;
  • 出版日期:2019-04-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:广东省自然科学基金项目(2018A030307075);; 广东省教育厅科研项目(2015KTSCX128)
  • 语种:中文;
  • 页:HBNB201902024
  • 页数:8
  • CN:02
  • ISSN:13-1101/S
  • 分类号:158-165
摘要
为了探讨局部根系水分胁迫下不同形态氮素对水稻幼苗氮素吸收、生理特性和根系生长的影响,以水稻品种金优402为材料,设置非胁迫、局部根系胁迫、全根胁迫3种水分条件和全硝、铵硝比为50/50、全铵3个氮素形态,采用PEG模拟水分胁迫的室内分根营养液培养方法,研究其氮素吸收和累积、光合速率、蒸腾速率、气孔导度及根长、根表面积、根体积的变化规律。结果表明,在局部根系水分胁迫下,两侧根系同时供应NH_4~+-N和NO_3~--N最有利于水稻氮素的吸收和累积,两侧根系均单一供应NO_3~--N的水稻氮素吸收和累积量最少;与未受胁迫处理的水稻相比,局部根系胁迫下两侧根系同时供应NH_4~+-N和NO_3~--N的水稻光合速率受影响较小,而气孔导度和蒸腾速率则明显下降。不同氮形态处理间,两侧根系同时供应NH_4~+-N和NO_3~--N的水稻光合速率和气孔导度均为最大,单一供应NO_3~--N的最小。在所有处理中,局部根系水分胁迫下两侧根系同时供应NH_4~+-N和NO_3~--N的水稻WUE最高。在局部根系水分胁迫下,两侧同时供应NH_4~+-N和NO_3~--N的水稻根长、根表面积、根体积绝大多数大于其他2种氮素形态,且受胁迫一侧和不受胁迫一侧根系相差较小。除左右根室均单一供应NO_3~--N的水稻外,局部根系胁迫处理的根长、根表面积、根体积均大于非胁迫处理。研究结果表明,局部根系水分胁迫和氮素形态耦合可以提高水稻幼苗的水、氮素吸收。
        To study the response of rice Jinyou 402 seedling to nitrogen forms under partial root drying condition, a hydroponic experiment simulated by PEG was conducted using the method of nutrient solution culture. The trials had three water conditions: non-water stress, partial root drying, and all root water stress, and three nitrogen forms: NH_4~+-N/NO_3~--N of 0/100,50/50,100/0). Nitrogen absorption and accumulation, photosynthetic rate, transpiration rate, stomatal conductance, root length, root surface area and root volume of rice were determined. The results showed that under partial root drying condition, supplying both NH_4~+-N and NO_3~--N were most beneficial to nitrogen absorption and accumulation of rice seedling; The nitrogen absorption and accumulation were the minimum when NO_3~--N was supplied in two sides of root; The photosynthetic rate of rice, supplied with NH_4~+-N and NO_3~--N, were not affected obviously, but the transpiration rate and stomatal conductance declined significantly under partial root drying condition, compared to the rice with no water stress. The photosynthetic rate and stomatal conductance of rice supplied with NH_4~+-N and NO_3~--N in two sides of root were the highest among different nitrogen forms, and the lowest supplied with single NO_3~--N. WUE of rice supplied with NH_4~+-N and NO_3~--N was the biggest under the condition of partial root water stress. In condition of partial root drying, root length, root surface area, and root volume of most rices supplied with NH_4~+-N and NO_3~--N were all greater than those of rice supplied with single NH_4~+-N or NO_3~--N, and there were no significant difference between two sides of root. Furthermore, root length, root surface area, and root volume of rice subjected to partial root water stress environment were all greater than those with no water stress treatments, except for rice supplied with only NO_3~--N in two sides of root. This research proved that the interaction of partial root drying with nitrogen forms could promoted the water and nitrogen absorption of rice seedlings.
引文
[1] Adu M O,Yawson D O,Armah F A,Asare P A,Frimpong K A.Meta-analysis of crop yields of full,deficit,and partial root-zone drying irrigation[J].Agricultural Water Management,2018,197:79-90.doi:10.1016/j.agwat.2017.11.019.
    [2] Li W,Jia L,Wang L.Chemical signals and their regulations on the plant growth and water use efficiency of cotton seedlings under partial root-zone drying and different Nitrogen applications[J].Saudi Journal of Biological Sciences,2017,24(3):477-487.doi:10.1016/j.sjbs.2017.01.015.
    [3] Wang H Q,Liu F L,Andersen M N,Jensen C R.Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (Solanum tuberosum L.)[J].Irrigation Science,2009,27(6):443-448.doi:10.1007/s00271-009-0159-y.
    [4] Jovanovic Zorica,Stikic Radmila,Vucelic-Radovic Biljana,Paukovic Milena,Brocic Zoran,Matovic Gordana,Rovcanin Sead,Mojevic Mirjana.Partial root-zone drying increases WUE,N and antioxidant content in field potatoes[J].European Journal of Agronomy,2010,33(2):124-131.doi:10.1016/j.eja.2010.04.003.
    [5] Wang Z,Kang S,Jensen C R,Liu F.Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves[J].Journal of Experimental Botany,2012,63(3):1145-1153.doi:10.1093/jxb/err331.
    [6] Sampathkumar T,Pandian B J,Rangaswamy M,Jeyakumar P.Influence of deficit irrigation on growth,yield and yield parameters of cotton-maize cropping sequence[J].Agricultural Water Management,2013,130:90-102.doi:10.1016/j.agwat.2013.08.018.
    [7] Nouna B B,Rezig M,Bahrouni H,Haroun Ben Ammar.Effect of partial root-zone drying irrigation technique(PRD)on the total dry matter,yield and water use efficiency of potato under Tunisian semi-arid conditions[J].The Journal of Agricultural Science,2016,8(7):129-141.doi:10.5539/jas.v8n7p129.
    [8] Gil P M,Lobos P,Duran K,Olguin J,Cea D.Partial root-zone drying irrigation,shading,or mulching effects on water savings,productivity and quality of Syrah grapevines[J].Scientia Horticulturae,2018,240:478-483.doi:10.1016/j.scienta.2018.06.050.
    [9] 何海兵,杨茹,廖江,武立权,孔令聪,黄义德.水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展[J].中国农业科学,2016,49(2):305-318.doi:10.3864/j.issn.0578-1752.2016.02.011.He H B,Yang R,Liao J,Wu L Q,Kong L C,Huang Y D.Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region[J].Scientia Agricultura Sinica,2016,49(2):305-318.
    [10] Wu F Z,Bao W K,Li F L,Wu N.Effects of drought stress and N supply on the growth,biomass partitioning and water-use efficiency of Sophora davidii seedlings[J].Environmental and Experimental Botany,2008,63(1/3):248-255.doi:10.1016/j.envexpbot.2007.11.002.
    [11] Cramer M D,Hawkins H J,Verboom G A.The importance of nutritional regulation of plant water flux[J].Oecologia,2009,161(1):15-24.doi:10.1007/s00442-009-1364-3.
    [12] Gonzalez-Dugo V,Durand J L,Gastal F.Water deficit and nitrogen nutrition of crops.A review[J].Agronomy for Sustainable Development,2010,30(3):529-544.doi:10.1051/agro/2009059.
    [13] 陈贵,郭世伟,赵国华,张红梅,沈亚强,程旺大.N营养和水分胁迫互作对水稻渗透调节的影响[J].中国农业大学学报,2014,19(5):38-45.doi:10.11841/j.issn.1007-4333.2014.05.06.Chen G,Guo S W,Zhao G H,Zhang H M,Shen Y Q,Cheng W D.Effect of N nutrition and water stress on rice osmoregulation at seeding stage[J].Journal of China Agricultural University,2014,19(5):38-45.
    [14] 陈钰佩,高翠民,任彬彬,胡香玉,沈其荣,郭世伟.水分胁迫下氮素形态影响水稻根系通气组织形成的生理机制[J].南京农业大学学报,2017,40(2):273-280.Chen Y P,Gao C M,Ren B B,Hu X Y,Shen Q R,Guo S W.Physiological mechanism of nitrogen forms affect aerenchyma formation of rice root under water stress[J].Journal of Nanjing Agricultural University,2017,40(2):273-280.
    [15] 何海兵,杨茹,吴汉,尤翠翠,朱德泉,时强强,武立权.干湿交替灌溉下氮素形态对水稻花期光合及产量形成的影响[J].西北植物学报,2017,37(11):2230-2237.doi:10.7606/j.issn.1000-4025.2017.11.2230.He H B,Yang R,Wu H,You C C,Zhu D Q,Shi Q Q,Wu L Q.Effects of N forms on photosynthesis at flowering and yield formation in weting-drying alternation irrigation[J].Acta Botanica Boreali-occidentalia Sinica,2017,37(11):2230-2237.
    [16] 陈贵,周毅,郭世伟,沈其荣.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J].中国农业科学,2007,40(10):2162-2168.doi:10.3321/j.issn:0578-1752.2007.10.006.Chen G,Zhou Y,Guo S W,Shen Q R.The regulatory mechanism of different nitrogen form on photosynthetic efficiency of rice plants under water stress[J].Scientia Agricultura Sinica,2007,40(10):2162-2168.
    [17] Du S Q,Kang S Z,Li F S,Du T S.Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China[J].Agricultural Water Management,2017,179:184-192.doi:10.1016/j.agwat.2016.05.011.
    [18] Ramazan Topak,Bilal Acar,Refik Uyan?zb,Ercan Ceyhan.Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area[J].Agricultural Water Management,2016,176:180-190.doi:10.1016/j.agwat.2016.06.004.
    [19] 刘秀珍,郭丽娜,赵兴杰.不同水分条件下氮肥形态配比对苋菜养分与产量的影响[J].水土保持学报,2008,22(6):141-144.doi:10.3321/j.issn:1009-2242.2008.06.030.Liu X Z,Guo L N,Zhao X J.Effects of nitrogen forms on nutrient and yield of amaranth with different irrigation[J].Journal of Soil and Water Conservation,2008,22(6):141-144.
    [20] 王海红,束良佐,周秀杰,祝鹏飞,刘亚文.局部根系水分胁迫下氮形态对玉米幼苗光合特性的影响[J].核农学报,2009,23(4):686-691.Wang H H,Shu L Z,Zhou X J,Zhu P F,Liu Y W.Effect of nitrogen form on photosynthetic characteristics of maize seedlings under partial root water stress[J].Journal of Nuclear Agricultural Sciences,2009,23(4):686-691.
    [21] 柏彦超,钱晓晴,周雄飞,蔡树美,王娟娟,赵进.不同氮素形态和水分胁迫对水稻水分吸收及光合特性的影响[J].扬州大学学报(农业与生命科学版),2010,31(3):50-54.Bai Y C,Qian X Q,Zhou X F,Cai S M,Wang J J,Zhao J.Effect of nitrogen form and water stress on photosynthetic characteristics and water uptake in rice[J].J ou rnal of Yangzhou University(Agricultural and Life Science Edition),2010,31(3):50-54.
    [22] Geilfus C M.The pH of the apoplast:dynamic factor with functional impact under stress[J].Molecular Plant,2017,10(11):1371-1386.doi:10.1016/j.molp.2017.09.018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700