基于Fe~(2+):ZnSe微米粉末嵌入ZBLAN玻璃的4.32μm中红外随机激光
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:4.32 μm mid-infrared random lasing based on ZBLAN glass containing micro-sized Fe~(2+):ZnSe powder
  • 作者:邓丽娟 ; 冯国英 ; 张弘 ; 戴深宇
  • 英文作者:DENG Li-juan;FENG Guo-ying;ZHANG Hong;DAI Shen-yu;Institute of Laser and Micro/Nano Engineering,College of Electronics and Information Engineering, Sichuan University;
  • 关键词:Fe ; ZnSe微米粉末 ; ZBLAN玻璃 ; 中红外 ; 随机激光
  • 英文关键词:Fe:ZnSe micro-sized powder;;ZBLAN glass;;mid-infrared;;random laser
  • 中文刊名:JGHW
  • 英文刊名:Laser & Infrared
  • 机构:四川大学电子信息学院激光微纳工程研究所;
  • 出版日期:2019-07-20
  • 出版单位:激光与红外
  • 年:2019
  • 期:v.49;No.490
  • 基金:国家自然科学基金项目(No.11574221)资助
  • 语种:中文;
  • 页:JGHW201907012
  • 页数:6
  • CN:07
  • ISSN:11-2436/TN
  • 分类号:67-72
摘要
在室温下制备了基于Fe~(2+):ZnSe微米粉末嵌入ZBLAN(ZrF_4-BaF_2-LaF_3-AlF_3-NaF)玻璃的中红外随机激光器,随机激光的中心波长约为4.32μm。Fe~(2+):ZnSe微米粉末的平均晶粒尺寸为3.54μm,XRD结果表明Fe~(2+):ZnSe微米粉末为立方闪锌矿结构。在2.94μm纳秒脉冲激光泵浦下,随机激光的阈值为557.89 mJ/cm~2。随着泵浦能量的增加,随机激光多纵模的特点也随之出现。泵浦能量超过阈值后,随机激光的光谱线宽为10 nm,脉冲宽度为50 ns。这项工作为获得稳定的中红外激光源提供了一种简单而经济的方法,将粉末嵌入固体基质中可以对粉末起到稳定的作用,这种方法在制备中红外光子器件和光纤激光器上具有潜在前景。
        Mid-infrared random laser based on Fe~(2+) doped ZnSe powders embedded in ZBLAN glass with a center wavelength at ~4.32 μm is developed at room temperature.The average grain size of micro-sized Fe~(2+):ZnSe powder is 3.54 μm,and the XRD results indicated that the micro-sized Fe~(2+):ZnSe powders are of cubic zinc blende structure.The threshold of the random laser is 557.89 mJ/cm~2 under the 2.94 μm nanosecond pulse laser.The characteristic of the multi-longitudinal mode of random laser appears with the increasing of pump energy.As the pump energy increases until it exceeds the threshold,the random laser has a narrow spectral line-width of 10 nm,and the steady pulse width drops to 50 ns.This work provides a simple and cost-effective way to obtain stable mid-IR laser source.Embedding powders into solid host can be an appropriate method to stabilize powders,especially for middle-infrared lasing powders,which have the potential use for fabricating middle-infrared photonic devices and fiber laser.
引文
[1] Noginov M.Other types of solid-state random lasers[M].Springer:Solid-State Random Lasers,2005:198-221.
    [2] Wiersma D.Laser physics:the smallest random laser[J].Nature,2000,406:132-133.
    [3] Cao H.Random lasers:development,features and applications[J].Optics & Photonics News,2005:24-29.
    [4] Ambartsumyan R B N,Kryukov P,Letokhov V.Laser with nonresonant feedback[J].JETP Letters,1966:167-169.
    [5] Cao H,Zhao Y G,Ho S T,et al.Random laser action in semiconductor powder[J].Physical Review Letters,1999,(82):2278-2281.
    [6] Martyshkin D,Fedorov V,Kim C,et al.Mid-IR random lasing of Cr-doped ZnS nanocrystals[J].Journal of Optics,2010,12(2):024005.
    [7] de Matos C J,De S M L,Britosilva A M,et al.Random fiber laser[J].Physical Review Letters,2007,99(15):153903.
    [8] Yang L,Feng G,Yao K,et al.Random laser action in weakly nano-scattering solution[J].Integrated Ferroelectrics,2012,138(1):9-15.
    [9] Yi J,Feng G,Yang L,et al.Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices[J].Optics Communications,2012,285(24):5276-5282.
    [10] Yi J,Feng G,Yang X,et al.Random lasing in a dye-doped polymer thin film waveguide deposited on a Si surface microstructured by femtosecond laser ablation[J].Journal of Modern Optics,2014,61(3):215-221.
    [11] Yi J,Yu Y,Shang J,et al,Waveguide random laser based on a disordered ZnSe-nanosheets arrangement[J].Optics Express,2016,24(5):5102-5109.
    [12] Kumar A,Yu S,Random laser action in dielectric-metal-dielectric surface plasmon waveguides[J].Applied Physics Letters,2009,95(23):231114.
    [13] Tulek A,Polson RVardeny Z,Naturally occurring resonators in random lasing of π-conjugated polymerfilms[J].Nature Physics,2010,6(4):303-310.
    [14] Zhao X,Ning S,Liang S,Random lasing from granular surface of waveguide with blends of PS and PMMA[J].Optics Express,2011,19:16126-16131.
    [15] Zhai T,Zhang X,Pang Z,et al,Random laser based on waveguided plasmonic gain channels[J].Nano Letters,2011,11(10):4295-4298.
    [16] Markushev V,Briskina C,Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders[J].Soviet Journal of Quantum Electronics,1986:281-282.
    [17] Sorokina I,Shcherbitsky V,Kuleshov N,Novel mid-infrared random powder lasers:Cr2+:ZnS vs Cr2+:ZnSe[J].IThG22,2004.
    [18] Oliveira M,Araújo C,Messaddeq Y,Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder[J].Optics Express,2011,19(6):5620-5626.
    [19] Moura A,Jerez V,Maia L,et al,Multi-wavelength emission through self-induced second-order wave-mixing processes from a Nd3+ doped crystalline powder random laser[J].Scientific Reports,2015,5:13816.
    [20] Azkargorta J,Iparraguirre I,Barredozuriarrain M,et al,Random Laser Action in Nd ∶YAG Crystal Powder[J].Materials,2016,9(5):369.
    [21] Moura A,Pincheira P,Maia L,et al,Two-color random laser based on a Nd3+ doped crystalline powder[J].Journal of Luminescence,2017,181:44-48.
    [22] Kim C,Martyshkin D,Fedorov V,et al,Middle-infrared random lasing of Cr2+ doped ZnSe,ZnS,CdSe powders,powders imbedded in polymer liquid solutions,and polymer films[J].Optics Communications,2009,282(10):2049-2052.
    [23] Kim C,Fedorov V,Mirov S,Mid-infrared Cr2+-ZnSe random powder lasers[J].Optics Express,2008 16:4952-4959.
    [24] Martinez A,Martyshkin D,Fedorov V,et al.Spectroscopic characterization of Fe2+-doped II-VI ternary and quaternary mid-IR laser active powders[C].SPIE LASER,2014.
    [25] Jean B,Bende.Thomas.Mid-IR laser applications in medicine[M]//Solid-State Mid-Infrared Laser Sources,Springer Berlin Heidelberg:Berlin:530-565.
    [26] Amini-Nik S,Kraemer D,Cowan M,et al,Ultrafast mid-IR laser scalpel:protein signals of the fundamental limits to minimally invasive surgery[J].PIRL Laser Scalpel,2010,5(9):e13053.
    [27] Willer U,Saraji M,Khorsandi A,et al,Near- and mid-infrared laser monitoring of industrial processes,environment and security applications[J].Optics and Lasers in Engineering,2006,44(7):699-710.
    [28] Chen D,Hu X,Liu W,Research on the High Resolution Trace Gas Detection Based on the Difference-frequency Mid-infrared Spectrometer[J].Acta Photonica Sinica,2012,41:678-683.
    [29] Jackson S,Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 μm[J].Optics Letters,2004,29:334-336.
    [30] Zhu X,Compact 2W wavelength-tunable Er-ZBLAN mid-infrared fiber laser[J].Optics Letters,2007,32:2381-2383.
    [31] Faucher D,Androz G,Caron.N,20 W passively cooled single-mode all-fiber laser at 2.8 μm[J].Optics Letters,2011,36:1104-1106.
    [32] Fedorov V,Mirov S,Gallian A,et al,3.77-5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures[J].IEEE Journal of Quantum Electronics,2006,42(9):907-917.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700