电阻抗成像技术监测急性呼吸窘迫综合征患者呼气末正压滴定时局部机械能的临床应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of regional mechanical power monitored by electrical impedance tomography during positive end-expiratory pressure titration in acute respiratory distress syndrome patients
  • 作者:池熠 ; 何怀武 ; 袁思依 ; 招展奇 ; 隆云
  • 英文作者:Chi Yi;He Huaiwu;Yuan Siyi;Zhao Zhanqi;Long Yun;Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences;
  • 关键词:电阻抗成像技术 ; 机械能 ; 呼气末正压 ; 呼吸窘迫综合征 ; 成人
  • 英文关键词:Electrical impedance tomography;;Mechanical power;;Positive end-expiratory pressure;;Respiratory distress syndrome,adult
  • 中文刊名:ZZYD
  • 英文刊名:Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition)
  • 机构:中国医学科学院北京协和医学院北京协和医院重症医学科;
  • 出版日期:2019-05-28
  • 出版单位:中华重症医学电子杂志(网络版)
  • 年:2019
  • 期:v.5
  • 语种:中文;
  • 页:ZZYD201902007
  • 页数:5
  • CN:02
  • ISSN:11-6033/R
  • 分类号:38-42
摘要
目的观察急性呼吸窘迫综合征(ARDS)患者呼气末正压(PEEP)滴定过程中的潮气分布和局部机械能。方法对2018年11月至2019年2月北京协和医院收入的10例接受有创机械通气的ARDS患者进行PEEP滴定(15~0 cmH2O,1 cmH2O=0.098 kPa),该过程中使用电阻抗成像(EIT)技术监测肺内从腹侧到背侧人为划分的4个"感兴趣区(ROI)"(ROI 1~2区代表非重力依赖区,ROI 3~4区代表重力依赖区)的局部潮气比例,并计算局部机械能大小。采用单因素方差分析比较不同PEEP水平下ROI 1~4区通气分布及机械能的差异。结果 (1)随着PEEP从15 cmH2O递减至0 cmH2O,重力依赖区潮气比例下降,非重力依赖区潮气比例增加,且差异均有统计学意义(F=5.611、5.587,P均<0.001),潮气由重力依赖区向非重力依赖区分布。(2)随着PEEP从15 cmH2O递减至0 cmH2O,总机械能降低,且差异有统计学意义(F=19.601,P <0.001);而局部机械能在ROI2~4区降低,且差异均有统计学意义(F=4.130,P=0.003;F=30.690,P <0.001;F=16.744,P <0.005),但在ROI 1区差异无统计学意义(F=0.460,P=0.804)。结论借助EIT技术能够监测ARDS患者PEEP滴定过程中的局部机械能。PEEP递减过程中,总体机械能降低,但局部机械能存在增加的可能性。局部机械能在PEEP设置中可能提供有用的信息。
        Objective To investigate regional gas distribution and regional mechanical power during positive end-expiratory pressure(PEEP) titration in acute respiratory distress syndrome(ARDS)patients using electrical impedance tomography(EIT). Methods Ten ARDS patients admitted to Peking Union Medical College Hospital from November 2018 to February 2019 and receiving invasive mechanical ventilation were studied. A descending PEEP trial(15-0 cmH2 O, 1 cm H_2O=0.098 kPa) in 3 cmH_2O steps was monitored by EIT, with lung images divided into four ventral-to-dorsal horizontal regions of interest(ROIs)1 and 2 represent non-dependent areas, while ROIs 3 and 4 represent dependent areas). Gas distributions in the four regions were recorded, with which regional mechanical powers in each region were calculated.Results With PEEP decreasing from 15 cmH2 O to 0 cmH2 O, tidal volumes significantly decreased in dependent areas(F=5.611, P < 0.001), but significantly increased in non-dependent areas(F=5.587,P < 0.001). Ventilation shifted from dorsal regions to ventral regions during the descending PEEP trial. With PEEP decreasing from 15 cmH2 O to 0 cmH2 O, global mechanical power decreased significantly(F=19.601,P < 0.001); mechanical power decreased significantly in ROIs 2-4(F=4.130, P=0.003; F=30.690, P < 0.001;F=16.744, P < 0.005) but did not change significantly in ROI 1(F=0.460, P=0.804). Conclusions Regional mechanical power can be monitored by EIT. Global mechanical power decreases during the descending PEEP trial, while regional mechanical power may increase in some cases, which may help in the selection of PEEP.
引文
1 Gattinoni L,Tonetti T,Quintel M.Intensive care medicine in 2050:ventilator-induced lung injury[J].Intensive Care Med,2018,44(1):76-78.
    2 Vasques F,Duscio E,Cipulli F,et al.Determinants and Prevention of Ventilator-Induced Lung Injury[J].Crit Care Clin,2018,34(3):343-356.
    3 Zhao Z,Frerichs I,He H,et al.The calculation of mechanical power is not suitable for intra-patient monitoring under pressure-controlled ventilation[J].Intensive Care Med,2019,45(5):749-750.
    4 Brochard L,Bersten A.Mechanical Power:A Biomarker for the Lung?[J].Anesthesiology,2019,130(1):9-11.
    5 Gattinoni L,Tonetti T,Cressoni M,et al.Ventilator-related causes of lung injury:the mechanical power[J].Intensive Care Med,2016,42(10):1567-1575.
    6 Bachmann MC,Morais C,Bugedo G,et al.Electrical impedance tomography in acute respiratory distress syndrome[J].Crit Care,2018,22(1):263.
    7 Karsten J,Grusnick C,Paarmann H,et al.Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients[J].Acta Anaesthesiol Scand,2015,59(6):723-732.
    8 Ferguson ND,Fan E,Camporota L,et al.The Berlin definition of ARDS:an expanded rationale,justification,and supplementary material[J].Intensive Care Med,2012,38(10):1573-1582.
    9 Karsten J,Stueber T,Voigt N,et al.Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation:a prospective observational study[J].Crit Care,2016,20:3.
    10 Costa EL,Borges JB,Melo A,et al.Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography[J].Intensive Care Med,2009,35(6):1132-1137.
    11 Cressoni M,Gotti M,Chiurazzi C,et al.Mechanical Power and Development of Ventilator-induced Lung Injury[J].Anesthesiology,2016,124(5):1100-1108.
    12 Maia LA,Samary CS,Oliveira MV,et al.Impact of Different Ventilation Strategies on Driving Pressure,Mechanical Power,and Biological Markers During Open Abdominal Surgery in Rats[J].Anesth Analg,2017,125(4):1364-1374.
    13 Protti A,Cressoni M,Santini A,et al.Lung stress and strain during mechanical ventilation:any safe threshold?[J].Am J Respir Crit Care Med,2011,183(10):1354-1362.
    14 Serpa Neto A,Deliberato RO,Johnson AEW,et al.Mechanical power of ventilation is associated with mortality in critically ill patients:an analysis of patients in two observational cohorts[J].Intensive Care Med,2018,44(11):1914-1922.
    15 Victorino JA,Borges JB,Okamoto VN,et al.Imbalances in regional lung ventilation:a validation study on electrical impedance tomography[J].Am J Respir Crit Care Med,2004,169(7):791-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700