用户名: 密码: 验证码:
系统发育基因组学方法研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent progress in phylogenomic methods
  • 作者:李佳璇 ; 梁丹 ; 张鹏
  • 英文作者:LI Jia Xuan;LIANG Dan;ZHANG Peng;School of Life Sciences,Sun Yat-Sen University;
  • 关键词:高通量测序 ; 系统发育基因组学 ; 系统发育分析 ; 系统误差 ; 系统发育信号
  • 英文关键词:high-throughput sequencing;;phylogenomics;;phylogeny estimation;;systematic error;;phylogenetic signal
  • 中文刊名:JCXK
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:中山大学生命科学学院;
  • 出版日期:2019-04-16 17:03
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:v.49
  • 语种:中文;
  • 页:JCXK201904016
  • 页数:16
  • CN:04
  • ISSN:11-5840/Q
  • 分类号:170-185
摘要
系统发育基因组学是系统发育学与基因组学融合产生的一个交叉学科,主要通过分析基因组水平的大规模分子数据来解析生物之间的系统进化关系.本文简述了5种常用的基于高通量测序技术的系统发育基因组学数据获取方法:扩增子测序(targeted amplicon sequencing)、转录组测序(transcriptome sequencing)、简化基因组测序(reduced-representation sequencing)、目标序列捕获(target sequence capture)和低覆盖度的全基因组测序(low coverage whole-genome shotgun sequencing),归纳比较了每种方法的特点、适用范围、成本花费等.此外,本文还简述了系统发育基因组学数据分析中的5个基本步骤:数据预处理与组装、直系同源基因的鉴定、序列比对、数据质量控制和系统发育树的构建,并对这5个步骤的分析要点与常用软件的特点做了归纳.虽然系统发育基因组学分析是重建生命之树的一条必由之路,当前它也面临着一系列的问题:如大量数据的分析导致计算量与时间花费大幅增加、系统误差的影响会随着数据量增大而变得更为明显、不同数据集可能会给出高支持率但不一致的结果.最后,本文综合国内外学者的最新研究成果,对这些问题进行了讨论并给出了相应的建议.
        Phylogenomics is the intersection of the fields of phylogenetics and genomics,aiming to use genome-scale molecular data to resolve the phylogenetic relationships among organisms.In this review,we briefly introduced five methods of data collection in phylogenomics by high-throughput sequencing:targeted amplicon sequencing,transcriptome sequencing,reduced-genomerepresentation sequencing,target sequence capture,and low coverage whole-genome shotgun sequencing.We summarized and compared the characteristics,applications and costs of each method.In addition,we reviewed the current work flow of data processing of a typical phylogenomic analysis,including five steps:data preprocessing and assembly,orthologous sequences identification,sequence alignment,data quality control and phylogenetic tree reconstruction.We also summarized the key points of each step and introduced software that are used in these steps.Phylogenomics is a promising way to reconstruct the Tree of Life.However,it also faces a series of problems at present.For example,the analysis of genome-scale data will lead to a significant increase in computation time,the impact of systematic error will become more serious when the data size increases and different data sets may yield strongly supported but inconsistent results.In the end of this review,we summarized and discussed the latest studies concerning these issues and made some suggestions to deal with these problems in the future.
引文
1 Soltis D E,Soltis P S.Contributions of plant molecular systematics to studies of molecular evolution.Plant Mol Biol,2000,42:45-75
    2 Soltis D E,Albert V A,Savolainen V,et al.Genome-scale data,angiosperm relationships,and“ending incongruence”:A cautionary tale in phylogenetics.Trends Plant Sci,2004,9:477-483
    3 Nei M,Kumar S.Molecular Evolution and Phylogeneties.New York:Oxford University Press,2000
    4 Degnan J H,Rosenberg N A.Gene tree discordance,phylogenetic inference and the multispecies coalescent.Trends Ecol Evol,2009,24:332-340
    5 Zou X H,Ge S.Conflicting gene trees and phylogenomics(in Chinese).J Syst Evol,2008,46:795-807[邹新慧,葛颂.基因树冲突与系统发育基因组学研究.植物分类报,2008,46:795-807]
    6 Nakhleh L.Computational approaches to species phylogeny inference and gene tree reconciliation.Trends Ecol Evol,2013,28:719-728
    7 Delsuc F,Brinkmann H,Philippe H.Phylogenomics and the reconstruction of the tree of life.Nat Rev Genet,2005,6:361-375
    8 Posada D.Phylogenomics for systematic biology.Syst Biol,2016,65:353-356
    9 Spatafora J W,Bushley K E.Phylogenomics and evolution of secondary metabolism in plant-associated fungi.Curr Opin Plant Biol,2015,26:37-44
    10 Yu L,Zhang Y P.Phylogenomics-an attractive avenue to reconstruct“Tree of Life”(in Chinese).Hereditas,2006,28:1445-1450[于黎,张亚平.系统发育基因组学-重建生命之树的一条迷人途径.遗传,2006,28:1445-1450]
    11 Wang Z Q,Xie Z Y,Cai Y F,et al.Advances in phylogenomics(in Chinese).Hereditas,2014,36:669-678[王章群,解增言,蔡应繁,等.系统发育基因组学研究进展.遗传,2014,36:669-678]
    12 Lemmon E M,Lemmon A R.High-throughput genomic data in systematics and phylogenetics.Annu Rev Ecol Evol Syst,2013,44:99-121
    13 Mc Cormack J E,Hird S M,Zellmer A J,et al.Applications of next-generation sequencing to phylogeography and phylogenetics.Mol Phylogenets Evol,2013,66:526-538
    14 Hackett S J,Kimball R T,Reddy S,et al.A phylogenomic study of birds reveals their evolutionary history.Science,2008,320:1763-1768
    15 Dunn C W,Hejnol A,Matus D Q,et al.Broad phylogenomic sampling improves resolution of the animal tree of life.Nature,2008,452:745-749
    16 Jung K H,Cao P,Seo Y S,et al.The rice kinase phylogenomics database:A guide for systematic analysis of the rice kinase super-family.Trends Plant Sci,2010,15:595-599
    17 Chen M Y,Liang D,Zhang P.Phylogenomic resolution of the phylogeny of laurasiatherian mammals:Exploring phylogenetic signals within coding and noncoding sequences.Genome Biol Evol,2017,9:1998-2012
    18 Feng Y J,Blackburn D C,Liang D,et al.Phylogenomics reveals rapid,simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary.Proc Natl Acad Sci USA,2017,114:E5864-E5870
    19 Zhang S Q,Che L H,Li Y,et al.Evolutionary history of Coleoptera revealed by extensive sampling of genes and species.Nat Commun,2018,9:205
    20 Torruella G,de Mendoza A,Grau-BovéX,et al.Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi.Curr Biol,2015,25:2404-2410
    21 Rujirawat T,Patumcharoenpol P,Lohnoo T,et al.Probing the phylogenomics and putative pathogenicity genes of Pythium insidiosum by Oomycete genome analyses.Sci Rep,2018,8:1-14
    22 Brown M W,Heiss A A,Kamikawa R,et al.Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group.Genome Biol Evol,2018,10:427-433
    23 Fernández R,Kallal R J,Dimitrov D,et al.Phylogenomics,diversification dynamics,and comparative transcriptomics across the spider tree of life.Curr Biol,2018,28:1489-1497.e5
    24 Regier J C,Shultz J W,Zwick A,et al.Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences.Nature,2010,463:1079-1083
    25 Shen X X,Liang D,Feng Y J,et al.A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics,tested by resolving the higher level relationships of the Caudata.Mol Biol Evol,2013,30:2235-2248
    26 Li J N,He C,Guo P,et al.A workflow of massive identification and application of intron markers using snakes as a model.Ecol Evol,2017,7:10042-10055
    27 Che L H,Zhang S Q,Li Y,et al.Genome-wide survey of nuclear protein-coding markers for beetle phylogenetics and their application in resolving both deep and shallow-level divergences.Mol Ecol Resour,2017,17:1342-1358
    28 O’Neill E M,Schwartz R,Bullock C T,et al.Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander(Ambystoma tigrinum)species complex.Mol Ecol,2013,22:111-129
    29 Bybee S M,Bracken-Grissom H,Haynes B D,et al.Targeted amplicon sequencing(TAS):A scalable next-gen approach to multilocus,multitaxa phylogenetics.Genome Biol Evol,2011,3:1312-1323
    30 Wielstra B,Duijm E,Lagler P,et al.Parallel tagged amplicon sequencing of transcriptome-based genetic markers for Triturus newts with the Ion Torrent next-generation sequencing platform.Mol Ecol Resour,2014,160:1080-1089
    31 Barrow L N,Ralicki H F,Emme S A,et al.Species tree estimation of North American chorus frogs(Hylidae:Pseudacris)with parallel tagged amplicon sequencing.Mol Phylogenets Evol,2014,75:78-90
    32 Zieliński P,Stuglik M T,Dudek K,et al.Development,validation and high-throughput analysis of sequence markers in nonmodel species.Mol Ecol Resour,2014,14:352-360
    33 Feng Y J,Liu Q F,Chen M Y,et al.Parallel tagged amplicon sequencing of relatively long PCR products using the Illumina Hi Seq platform and transcriptome assembly.Mol Ecol Resour,2016,16:91-102
    34 Grabherr M G,Haas B J,Yassour M,et al.Full-length transcriptome assembly from RNA-Seq data without a reference genome.Nat Biotech,2011,29:644-652
    35 Bankevich A,Nurk S,Antipov D,et al.SPAdes:A new genome assembly algorithm and its applications to single-cell sequencing.J Comput Biol,2012,19:455-477
    36 Wang Z,Gerstein M,Snyder M.RNA-Seq:A revolutionary tool for transcriptomics.Nat Rev Genet,2009,10:57-63
    37 Simpson J T,Wong K,Jackman S D,et al.ABy SS:A parallel assembler for short read sequence data.Genome Res,2009,19:1117-1123
    38 Oakley T H,Wolfe J M,Lindgren A R,et al.Phylotranscriptomics to bring the understudied into the fold:Monophyletic Ostracoda,fossil placement,and pancrustacean phylogeny.Mol Biol Evol,2013,30:215-233
    39 Wickett N J,Mirarab S,Nguyen N,et al.Phylotranscriptomic analysis of the origin and early diversification of land plants.Proc Natl Acad Sci USA,2014,111:E4859-E4868
    40 Unruh S A,Mc Kain M R,Lee Y I,et al.Phylotranscriptomic analysis and genome evolution of the Cypripedioideae(Orchidaceae).Am J Bot,2018,105:631-640
    41 Irisarri I,Baurain D,Brinkmann H,et al.Phylotranscriptomic consolidation of the jawed vertebrate timetree.Nat Ecol Evol,2017,1:1370-1378
    42 Misof B,Liu S,Meusemann K,et al.Phylogenomics resolves the timing and pattern of insect evolution.Science,2014,346:763-767
    43 Baird N A,Etter P D,Atwood T S,et al.Rapid SNP discovery and genetic mapping using sequenced RAD markers.PLo S ONE,2008,3:e3376
    44 Miller M R,Dunham J P,Amores A,et al.Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA(RAD)markers.Genome Res,2007,17:240-248
    45 van Orsouw N J,Hogers R C J,Janssen A,et al.Complexity reduction of polymorphic sequences(CRo PS?):A novel approach for large-scale polymorphism discovery in complex genomes.PLo S ONE,2007,2:e1172
    46 Van Tassell C P,Smith T P L,Matukumalli L K,et al.SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.Nat Methods,2008,5:247-252
    47 Elshire R J,Glaubitz J C,Sun Q,et al.A robust,simple genotyping-by-sequencing(GBS)approach for high diversity species.PLo S ONE,2011,6:e19379
    48 Meier J I,Marques D A,Mwaiko S,et al.Ancient hybridization fuels rapid cichlid fish adaptive radiations.Nat Commun,2017,8:14363
    49 Puritz J B,Matz M V,Toonen R J,et al.Demystifying the RAD fad.Mol Ecol,2015,23:5937-5942
    50 Andrews K R,Good J M,Miller M R,et al.Harnessing the power of RADseq for ecological and evolutionary genomics.Nat Rev Genet,2016,17:81-92
    51 Gautier M,Gharbi K,Cezard T,et al.The effect of RAD allele dropout on the estimation of genetic variation within and between populations.Mol Ecol,2013,22:3165-3178
    52 Davey J W,Cezard T,Fuentes-Utrilla P,et al.Special features of RAD sequencing data:Implications for genotyping.Mol Ecol,2013,22:3151-3164
    53 Wang S,Meyer E,Mc Kay J K,et al.2b-RAD:A simple and flexible method for genome-wide genotyping.Nat Methods,2012,9:808-810
    54 Guo Y,Yuan H,Fang D,et al.An improved 2b-RAD approach(I2b-RAD)offering genotyping tested by a rice(Oryza sativa L.)F2 population.BMC Genom,2014,15:956
    55 Peterson B K,Weber J N,Kay E H,et al.Double digest RADseq:An inexpensive method for de novo SNP discovery and genotyping in model and non-model species.PLo S ONE,2012,7:e37135
    56 Toonen R J,Puritz J B,Forsman Z H,et al.ez RAD:A simplified method for genomic genotyping in non-model organisms.Peer J,2013,1:e203
    57 Ali O A,O’Rourke S M,Amish S J,et al.RAD capture(Rapture):Flexible and efficient sequence-based genotyping.Genetics,2016,202:389-400
    58 Gnirke A,Melnikov A,Maguire J,et al.Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing.Nat Biotech,2009,27:182-189
    59 Burbano H A,Hodges E,Green R E,et al.Targeted investigation of the neandertal genome by array-based sequence capture.Science,2010,328:723-725
    60 Briggs A W,Good J M,Green R E,et al.Primer extension capture:Targeted sequence retrieval from heavily degraded DNA sources.J Vis Exp,2009,3:1573
    61 Lemmon A R,Emme S A,Lemmon E M.Anchored hybrid enrichment for massively high-throughput phylogenomics.Syst Biol,2012,61:727-744
    62 Faircloth B C,Mc Cormack J E,Crawford N G,et al.Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales.Syst Biol,2012,61:717-726
    63 George R D,Mc Vicker G,Diederich R,et al.Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection.Genome Res,2011,21:1686-1694
    64 Bi K,Vanderpool D,Singhal S,et al.Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales.BMC Genom,2012,13:403
    65 Li C,Hofreiter M,Straube N,et al.Capturing protein-coding genes across highly divergent species.Biotechniques,2013,54:321-326
    66 Maricic T,Whitten M,P??bo S.Multiplexed DNA sequence capture of mitochondrial genomes using PCR products.PLo S ONE,2010,5:e14004
    67 Mariac C,Scarcelli N,Pouzadou J,et al.Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies.Mol Ecol Resour,2014,14:1103-1113
    68 Pe?alba J V,Smith L L,Tonione M A,et al.Sequence capture using PCR-generated probes:A cost-effective method of targeted highthroughput sequencing for nonmodel organisms.Mol Ecol Resour,2014,496:1000-1010
    69 Mc Cormack J E,Tsai W L E,Faircloth B C.Sequence capture of ultraconserved elements from bird museum specimens.Mol Ecol Resour,2016,16:1189-1203
    70 Blaimer B B,Lloyd M W,Guillory W X,et al.Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens.PLo S ONE,2016,11:e0161531
    71 Dornburg A,Townsend J P,Brooks W,et al.New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset.Mol Phylogenets Evol,2017,110:27-38
    72 Alfaro M E,Faircloth B C,Harrington R C,et al.Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary.Nat Ecol Evol,2018,2:688-696
    73 Espeland M,Breinholt J,Willmott K R,et al.A comprehensive and dated phylogenomic analysis of butterflies.Curr Biol,2018,28:770-778.e5
    74 Prum R O,Berv J S,Dornburg A,et al.A comprehensive phylogeny of birds(Aves)using targeted next-generation DNA sequencing.Nature,2015,526:569-573
    75 Jones M R,Good J M.Targeted capture in evolutionary and ecological genomics.Mol Ecol,2016,25:185-202
    76 Allen J M,Boyd B,Nguyen N P,et al.Phylogenomics from whole genome sequences using a TRAM.Syst Biol,2017,105:786-798
    77 Allen J M,Huang D I,Cronk Q C,et al.a TRAM-automated target restricted assembly method:A fast method for assembling loci across divergent taxa from next-generation sequencing data.BMC Bioinf,2015,16:98
    78 Boyd B M,Allen J M,Nguyen N P,et al.Phylogenomics using target-restricted assembly resolves intra-generic relationships of parasitic lice(Phthiraptera:Columbicola).Syst Biol,2017,66:896-911
    79 Bolger A M,Lohse M,Usadel B.Trimmomatic:A flexible trimmer for illumina sequence data.Bioinformatics,2014,30:2114-2120
    80 Langmead B,Salzberg S L.Fast gapped-read alignment with Bowtie 2.Nat Methods,2012,9:357-359
    81 Pertea M,Pertea G M,Antonescu C M,et al.String Tie enables improved reconstruction of a transcriptome from RNA-seq reads.Nat Biotech,2015,33:290-295
    82 Trapnell C,Williams B A,Pertea G,et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nat Biotech,2010,28:511-515
    83 Xie Y,Wu G,Tang J,et al.SOAPdenovo-Trans:De novo transcriptome assembly with short RNA-Seq reads.Bioinformatics,2014,30:1660-1666
    84 Luo R,Liu B,Xie Y,et al.SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler.Gigascience,2012,1:18
    85 Zerbino D R,Birney E.Velvet:Algorithms for de novo short read assembly using de Bruijn graphs.Genome Res,2008,18:821-829
    86 Dierckxsens N,Mardulyn P,Smits G.NOVOPlasty:De novo assembly of organelle genomes from whole genome data.Nucl Acids Res,2016,53:955
    87 Hahn C,Bachmann L,Chevreux B.Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach.Nucl Acids Res,2013,41:e129
    88 Li H,Durbin R.Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics,2009,25:1754-1760
    89 Chen F,Mackey A J,Stoeckert C J,et al.Ortho MCL-DB:Querying a comprehensive multi-species collection of ortholog groups.Nucl Acids Res,2006,34:D363-D368
    90 Waterhouse R M,Tegenfeldt F,Li J,et al.Ortho DB:A hierarchical catalog of animal,fungal and bacterial orthologs.Nucl Acids Res,2013,41:D358-D365
    91 Altenhoff A M,Schneider A,Gonnet G H,et al.OMA 2011:Orthology inference among 1000 complete genomes.Nucl Acids Res,2011,39:D289-D294
    92 Sonnhammer E L L,?stlund G.In Paranoid 8:Orthology analysis between 273 proteomes,mostly eukaryotic.Nucl Acids Res,2015,43:D234-D239
    93 Masterson J.Stomatal size in fossil plants:Evidence for polyploidy in majority of angiosperms.Science,1994,264:421-424
    94 Wendel J F.Genome evolution in polyploids.Plant Mol Biol,2000,42:225-249
    95 Katoh K,Standley D M.MAFFT multiple sequence alignment software version 7:Improvements in performance and usability.Mol Biol Evol,2013,30:772-780
    96 Larkin M A,Blackshields G,Brown N P,et al.Clustal W and Clustal X version 2.0.Bioinformatics,2007,23:2947-2948
    97 Edgar R C.MUSCLE:Multiple sequence alignment with high accuracy and high throughput.Nucl Acids Res,2004,32:1792-1797
    98 Liu K,Raghavan S,Nelesen S,et al.Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees.Science,2009,324:1561-1564
    99 Mirarab S,Nguyen N,Guo S,et al.PASTA:Ultra-large multiple sequence alignment for nucleotide and amino-acid sequences.J Comput Biol,2015,22:377-386
    100 Simion P,Philippe H,Baurain D,et al.A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals.Curr Biol,2017,27:958-967
    101 Shen X X,Hittinger C T,Rokas A.Contentious relationships in phylogenomic studies can be driven by a handful of genes.Nat Ecol Evol,2017,1:0126
    102 Lanfear R,Calcott B,Ho S Y W,et al.Partition Finder:Combined selection of partitioning schemes and substitution models for phylogenetic analyses.Mol Biol Evol,2012,29:1695-1701
    103 Lanfear R,Frandsen P B,Wright A M,et al.Partition Finder 2:New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Mol Biol Evol,2016,34:772-773
    104 Posada D,Crandall K A.Modeltest:Testing the model of DNA substitution.Bioinformatics,1998,14:817-818
    105 Posada D.j Model Test:Phylogenetic model averaging.Mol Biol Evol,2008,25:1253-1256
    106 Abascal F,Zardoya R,Posada D.Prot Test:Selection of best-fit models of protein evolution.Bioinformatics,2005,21:2104-2105
    107 Stamatakis A.RAx ML version 8:A tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics,2014,30:1312-1313
    108 Nguyen L T,Schmidt H A,von Haeseler A,et al.IQ-TREE:A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Mol Biol Evol,2015,32:268-274
    109 Minh B Q,Nguyen M A T,von Haeseler A.Ultrafast approximation for phylogenetic bootstrap.Mol Biol Evol,2013,30:1188-1195
    110 Ronquist F,Teslenko M,van der Mark P,et al.Mrbayes 3.2:Efficient bayesian phylogenetic inference and model choice across a large model space.Syst Biol,2012,61:539-542
    111 Lartillot N,Lepage T,Blanquart S.Phylo Bayes 3:A Bayesian software package for phylogenetic reconstruction and molecular dating.Bioinformatics,2009,25:2286-2288
    112 Aberer A J,Kobert K,Stamatakis A.Exa Bayes:Massively parallel bayesian tree inference for the whole-genome era.Mol Biol Evol,2014,31:2553-2556
    113 Song S,Liu L,Edwards S V,et al.Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model.Proc Natl Acad Sci USA,2012,109:14942-14947
    114 Liu L,Yu L,Edwards S V.A maximum pseudo-likelihood approach for estimating species trees under the coalescent model.BMC Evol Biol,2010,10:302
    115 Mirarab S,Reaz R,Bayzid M S,et al.ASTRAL:Genome-scale coalescent-based species tree estimation.Bioinformatics,2014,30:i541-i548
    116 Larget B R,Kotha S K,Dewey C N,et al.BUCKy:Gene tree/species tree reconciliation with Bayesian concordance analysis.Bioinformatics,2010,26:2910-2911
    117 Ane C,Larget B,Baum D A,et al.Bayesian estimation of concordance among gene trees.Mol Biol Evol,2007,24:1575
    118 Heled J,Drummond A J.Bayesian inference of species trees from multilocus data.Mol Biol Evol,2010,27:570-580
    119 Bao J,Xia H,Zhou J,et al.Efficient implementation of Mr Bayes on multi-GPU.Mol Biol Evol,2013,30:1471-1479
    120 Bapteste E,Brinkmann H,Lee J A,et al.The analysis of 100 genes supports the grouping of three highly divergent amoebae:Dictyostelium,Entamoeba,and Mastigamoeba.Proc Natl Acad Sci USA,2002,99:1414-1419
    121 Madsen O,Scally M,Douady C J,et al.Parallel adaptive radiations in two major clades of placental mammals.Nature,2001,409:610-614
    122 Rokas A,Williams B L,King N,et al.Genome-scale approaches to resolving incongruence in molecular phylogenies.Nature,2003,425:798-804
    123 Lockhart P J,Steel M A,Hendy M D,et al.Recovering evolutionary trees under a more realistic model of sequence evolution.Mol Biol Evol,1994,11:605-612
    124 Liu Q,Feng Y,Xue Q.Analysis of factors shaping codon usage in the mitochondrion genome of.Mitochondrion,2004,4:313-320
    125 Behura S K,Severson D W.Codon usage bias:Causative factors,quantification methods and genome-wide patterns:With emphasis on insect genomes.Biol Rev,2013,88:49-61
    126 Plotkin J B,Kudla G.Synonymous but not the same:The causes and consequences of codon bias.Nat Rev Genet,2011,12:32-42
    127 Andreasen K,Baldwin B G.Unequal evolutionary rates between annual and perennial lineages of checker mallows(Sidalcea,Malvaceae):Evidence from 18S-26S rDNA internal and external transcribed spacers.Mol Biol Evol,2001,18:936-944
    128 Philippe H,Zhou Y,Brinkmann H,et al.Heterotachy and long-branch attraction in phylogenetics.BMC Evol Biol,2005,5:50
    129 Wiens J J.Can incomplete taxa rescue phylogenetic analyses from long-branch attraction?Syst Biol,2005,54:731-742
    130 Lartillot N,Philippe H.A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process.Mol Biol Evol,2004,21:1095-1109
    131 Kolaczkowski B,Thornton J W.Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous.Nature,2004,431:980-984
    132 Philippe H,Germot A.Phylogeny of eukaryotes based on ribosomal RNA:Long-branch attraction and models of sequence evolution.Mol Biol Evol,2000,17:830-834
    133 Philippe H,Brinkmann H,Lavrov D V,et al.Resolving difficult phylogenetic questions:Why more sequences are not enough.PLo S Biol,2011,9:e1000602
    134 Salichos L,Rokas A.Inferring ancient divergences requires genes with strong phylogenetic signals.Nature,2013,497:327-331
    135 Chen M Y,Liang D,Zhang P.Selecting question-specific genes to reduce incongruence in phylogenomics:A case study of jawed vertebrate backbone phylogeny.Syst Biol,2015,64:1104-1120
    136 Wang Y H,Wu H Y,Rédei D,et al.When did the ancestor of true bugs become stinky?Disentangling the phylogenomics of HemipteraHeteroptera.Cladistics,2019,35:42-66
    137 i5K Consortium.The i5K Initiative:Advancing arthropod genomics for knowledge,human health,agriculture,and the environment.J Hered,2013,104:595-600

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700